Nic

PROGRAMMING THE NICOLET 1080
STORED PROGRAM COMPUTER

A Course in Programming for the Beginner

Nicolet Instrument Corporation
5225 Verona Road
Madison, Wisconsin 53711
Revised December 1974

Copyright 1972, by Nicolet Instrument Corporation

B Nl B AN E A EEEEENENEENENENNN N

TABLE OF CONTENTS

1. BASIC NUMERICAL CONCEPTS
A, Introduction
B. Architecture
1. Description of Memory

2. Computer Words

C. Number Systems
1, Binary Notation
2. Octal Number System
3. Octal Arithmetic
4, Conversion Between Octal and Decimal
5, Conversion Between Decimal and Octal
6. Exercises

D. Important Numerical Concepts for 1080 Programming
1, Introduction
2, Complements
3. Two's Complement
4, Subtraction
5. The Logical AND
6. The Inclusive OR
7. Exercises

1. BASIC PROGRAMMING CONCEPTS

A, Addresses

B Registers Used in the 1080
1. The Instruction Register
2. The Program Counter
3. The Accumulator
4. The Multiplier-Quotient Register
5, The Zero Test Register

C. Programming the 1080 Using Group I Instructions

1, Mnemonics
2, Subgroups of Group I Instructions

—

[=2) I, BTSN VUR U}

13

14
15
15
16
16

16
16

PROGRAMMING THE 1080 IN ASSEMBLY LANGUAGE

A,
B.
C

AamEmoHED

a. Loading the AC and Memory
b. Addition and Subtraction
c. Incrementing and Decrementing
d. Complementing
e. Negation
f, Constants
3. Destinations
4, Syntax

Addressing Modes

Bit Assignments

The Immediate Mode
The Direct Mode
Paging

Indirect Mode
Exercises

. .

.0301:503[\’)}—'

Labels
A Program to Add 10 Numbers Together
Communicating with the Teletype

Introduction

Switch Functions

Reading an ASCII Paper Tape
Programming the Teletype

[N I

The JMS Instruction

Shift Instructions

Skip Instructions

Miscellaneous Instructions

Exercises

Hardware Multiply-Divide

General Input-Output Instruction Format
Hardware Access Instructions

1. Display Instructions

2, Digitizer Instructions

3. Sweep Ramp and Clock

4, Software Control of Measure Mode
5. The STATUS Instruction
Exercises

16
17
17
17
17
18

18
19

19
19
21
22
22
24

25
26

28
28
29
30

31
33
34
35
36
37
40

41
43
43
44
44

46

"H E B ENENNBMNRNBNNNMN N B B B B B B

Iv.

LOADING PROGRAMS INTO THE 1080

SogEpr

Pushbuttons

Loading Programs Using the Binary Loader
Reloading the Binary Loader Using Nico-Loadeon
Binary Tape Format

THE ASSEMBLER-EDITOR

Dowp

Introduction

Preparation of Source Tapes
Logic of the Assembler-Editor
Assembler Conventions

1. Special Characters
2, Syntax

Assembler Loading and Use
1. Loading
2, Assembler Commands

3. Editor Commands

Special Features of the Assembler

DEBUGGING PROGRAMS

A,
B

Introduction
Outline of a Well-Written Program

Initialization

Routines Versus Subroutines
Program Gullibility

Zero Effects

End Effects

Conditional Branching
Comments

Human Engineering

0T DU AW
© e . . .

Use of Nicobug I

Manual Debugging

Loading and Storage of Nicobug II
Nicobug II Commands

Opening and Modifying Locations

.

B DO

48
49
50
52

54
54
54

55
56

56
57
58

60

63
63

63
64
64
65
65
65
65
66

66
67
67
68

5. Breakpoints
6. Masks and Dumps
7. Examples of the Use of Nicobug

D. Exercises
E. NMR-80, LAB-80, and BNC-12 Commands

APPENDIX

I,

Iv,

INDEX

ASCII CHARACTER CODES
BIT ASSIGNMENTS
Group I Instructions
Test Instructions
Display Instructions
MODIFYING THE ASSEMBLER (NIC-80/S-7304-B)
POWERS OF TWO

DECIMAL-OCTAL CONVERSION TABLE

69
69
70

72
73

74

76
77
78
80
81

82

85

L. BASIC NUMERICAL CONCEPTS

A, Introduction

The Nicolet Instrument Corporation 1080 computer is uniquely designed. It
incorporates the best features of the hard-wired signal averager for data acquisi-
tion and the versatility of the general purpose computer for data manipulation, The
1080 actually consists of two separate processors utilizing the same memory and
many of the same registers:

1. A wired program processor performs the data acquisition functions
of analog-to-digital signal conversion, addition of numbers, storage of data
points in memory, timing and counting of sweeps and display.

2. A powerful general purpose computer, which can be used to per-
form Fourier transforms, theoretical calculations, and data manipulations,

This manual will discuss the programming and use of the stored program
processor section of the 1080, References will be made, however, to the
relationship of stored and wired program throughout,

B. Architecture

1. Description of Memory

The 1080 memory consists of small doughnut shaped pieces of ferrite
called cores, each about the size of a period. Each core can be magnetized
in one of two directions, representing 1 or §, yes or no, on or off, true or
false, etc. These bistable devices are used to represent "binary digits" or
simply, 'bits."

The magnetic state of a particular core is changed by applying sufficient
current through wires strung through each core. In order that specific cores
may be changed independently, two sets of wires called x- and y-drivers are
strung through each core. Half of the necessary current is then applied through
each of the drivers, causing the change in magnetization to take place only in
the core where the two wires intersect. The left hand drawing shows the con-
ditions for "writing' a 1 into one core and the right hand one the conditions
needed to write a § into one core.

CURRENT
2 3

CURRENT CURRENT

CURRENT

Writing a 1 into core number 2 Writing a @ into core number 3

The contents of a core can be examined by writing a zero into it and
observing whether any change in magnetic flux occurs by this process. If a
change occurs, the core was previously in the 1 state. If no change occurs,
the core was already in the zero state. This change in flux is detected by a
third wire strung through the cores, called a sense wire. A change in mag-
netic flux will induce a current in the sense wire which is then amplified, de-
tected and used to set a one into a more permanent two-state device called a
flip-flop. Since memory must be destroyed to examine it, the next step that
the computer always performs is to copy the result back into memory from
the flip-flop. The flip-flop is unchanged by this process.

2. Computer Words

Rather than just utilizing endless strings of binary bits, the digital com-
puter decodes a certain size group of bits as one logical unit, or word, Typical
word lengths of various minicomputers are 8, 12, 16 or 18 bits. Because the
1080 is a signal averager as well as a data processor, the word length adopted
was 20 bits, since this provides an exceptionally large number of bits to accum-
ulate signals containing coherent noise contributions.

Since each computer word contains twenty bits, it can be used to represent
numbers ranging from @ to 22¢ -1. Numbers are represented in binary format,
where each digit is either a one or a zero. The right-most bit represents 1 or
o8 and the left-most bit 212, If all bits are ones, the resulting number equals
2020—1, since the addition of one to this number would cause the zeroing of all
bits in the word and the carry-out would set an imaginary 21st bit. The twenty
bit computer word is illustrated below. In order to remind us of the relation-
ship between each bit and a power of two, the bits are numbered from @ through

19 from right to left,

oligliztie|islayi3ajrRnyjlofpe 71651413 I 10
J 8§ 249§ ¢ @ ¥ o~ =
C. Number Systems

1. Binary Notation

Nearly all digital computers in use today use the binary number (base 2)
internally, Only the digits (or "hits™) 0 and 1 are used in this number system,
One can count from one to ten in binary as follows: 0, 1, 10, 11, 100, 101,
110, 111, 1000, 1001, 1010. Given a binary number, it can be converted from
binary (base 2) to decimal (base 10) by simply considering each digit to be a
multiplier of a power of two, Thus the number 1010 can be considered as:

i

1x23= 1x8
+0x 22= 0x 4
+t1x 2= 1x2 =
+0x 20= 0x1

I
S |
o N ©

It is not necessary to convert all numbers from binary to decimal to
perform operations with them, however, Let us examine the addition of num-~

bers in binary notation,

1 10 10111 01110111010110111011
+1 410 +10001 +01101101101010100110

10 100 101000 11100101000001100001

|+
=io =

As you can see from the above, the manipulation of even small binary num-
bers rapidly becomes quite cumbersome and the manipulation of 20-bit numbers
boggles the mind. For this reason, it is customary to use a sort of shorthand
method of representing binary numbers. This method contains as much informa-
tion, is readily convertible to binary and is much easier to assimilate, This
shorthand is called the octal or base-8 number system.

2. Octal Number System

The table shown below compares the octal, decimal and binary number
systems:

Decimal Octal Binary
0 0 000
1 1 001
2 2 010
3 3 011
4 4 100
5 5 101
6 6 110
7 7 111
8 10 1 000
9 11 1 001

10 12 1 010

Note the similarity between octal and decimal: they are the same from
zero to 7 and differ only from eight up. The difference arises,

because of the definition of the base of a number system. In a base-10 or deci-
mal system, the largest number we can represent in one digit is 9, or one less
than the base. In the base-8 or octal system, the largest number that we can
represent is 7, which is again one less than the base, Consequently, the base
is the first number in the system that requires two digits to represent. Thus,
eight in the octal system is represented by 10, just as ten in the decimal system
is represented by 10,

Conversion between octal and binary is far easier than between decimal
and binary, Examination of the table above will show why, since each octal
number between zero and seven can be represented by no more than three bin-
ary digits. As a result, conversion is simply a matter of dividing a binary
number into groups of three digits starting at the right end, and writing down
the octal equivalent of each group.

Thus 101011010011101 is divided into groups
101 011 010 011 101 and the conversion performed by simply

5 3 2 3 5 writing down each octal digit separately.

There is no reference made between binary groups, nor are there any carry-
out calculations to be made.

Conversely, we can convert octal to binary by simply writing down the
three-digit binary number equal to each octal digit. The octal number 12345
is converted as follows:

1 2 3 4 5
001 010 011 100 101
The octal-binary conversion process is so basic to small computer program-

ming that it should be committed to memory as rapidly as possible,

3. Octal Arithmetic

The only rule necessary to perform addition in octal is 7 + 1 = 10.
Remembering this single rule will automatically remind you that 7 + 2=11,
and 6 + 4 = 12 and so forth. For example:

22 246
+6 3 +153
105 421

y v v v v VGO V VW V9V V VFPVDPF VOV GBVFUOO OV VYD

Looking at the examples on page 3, we can simplify the binary addition
problem by converting to octal.

10111 _ 10111 _ 010111 _ 27
+10001 +10 001 +010 001 +21

50 = 101 000

More important, 20-bit numbers are reduced to more tractable form using
octal, as shown in this second example from page 3:

01110111010110111011 _ 1672673
01 101 101 101 010 100 110 1555246
3450141 = 11100101 000 001 100 001

At this point we can introduce an important rule of thumb that may be use-
ful in performing addition in octal. Add each pair of digits in your head in dec-
imal, If the sum is greater than seven, subtract eight, The remainder is the
digit to be put down in that column, and one is the carry. For example:

7 7
_+5 +5

(121g) then 12,9 -819= 4. So 14g (The subscripts 8 and 10 refer to
the number base used.)

4, Conversion Between Octal and Decimal

The conversion between octal and decimal is performed less often,
Using positional notation for base 8, the number 246g means

2x 82 = 2x 64 = 128
+4x8l = 4x 8= 32
+6 x 80 = 6 x 1=_6

1667,

However, one need not carry out this tedious operation since an octal to decimal
conversion table is provided in Appendix V.

5. Conversion Between Decimal and Octal

For numbers within the range of the table in Appendix V, the easiest way
to convert from decimal to octal is simply to look them up in the table. How-
ever, the general method for decimal-octal conversion is to subtract various
powers of eight from the decimal number, recording the number of subtractions
per power as the corresponding octal digit.

To convert the decimal number 2453 to octal, we begin by subtracting
83 = 512:

2453 1941 1429 9117
- 512 - 512 - 512 -512
1941 1429 917 405
number of
subtractions: 1 2 3 4

The octal digit for the 83 column is therefore 4.

We then proceed to subtract 82, or 64, There are so many subtractions
here, however, that division becomes easier, and so we divide 405 by 64:

405 _ 6, with a remainder of 21
64
The digit for the 82 column is therefore 6, We then divide by 81, or 8, and get

1 2 with a remainder of 5

8
The 81 column digit is thus 2, and the 80 column digit = 5, since

5 _ 5
=2_ =2 =35
80 1

The converted number, then, is
24537, = 46254,
While this method is unnecessary for smaller numbers available in most

tables, for larger numbers, subtraction of or division by various powers of
eight is useful until the remainder is in the range shown by the table.

6. Exercises

Q) Convert the following binary numbers to octal:

010 01010010101110111000
101101 10010111101000110110
00010101 10010101101110001010
1011010101

(2) Convert the fdllowing octal numbers to binary:

223 1264

11707 65643
2106463 3006557

(3) Convert the following octal numbers to decimal:

7777 10000
144 256
4076 12346

(4) Convert the following decimal numbers to octal:

4096 524,289
100 16,383
512
300

(5) Perform the following octal additions:

2467 12 10543 304566
1234 23 21615 134652

(6) Perform the following binary additions directly and by
conversion to octal, Compare your results,

110 101 111 001 100
001 010 000 111 101

10 100 001 101 111 101 100
01111 010 001 011 111 011

D. Important Numerical Concepts for 1080 Programming

1. Introduction

The minicomputer when first manufactured '"knows' absolutely nothing,
It understands no languages, nor Teletype commands., Since the machine is
completely empty when it is built, it is only fitting that the programmer go
halfway in learning to talk to it in concepts it can understand, These concepts
include a few numerical ones which may be unfamiliar to the average scientist,

2, Complements

The term complement, or more fully, one's complement is extremely
useful in referring to a binary machine, Put most simply, the one's comple-
ment of a number is obtained by changing all zeros to ones and all ones to
zeros. Thus 000 and 111 are complements. Similarly 101 and 010 are com-
plements.

The binary number

01 101 010 101 111 000 100 is the complement of
10 010 101 010 000 111 011, and vice-versa.

Looking at it another way, the sum of two binary numbers which are comple-
ments must be all ones since a one must always line up with a zero during
addition. Thus the following complements sum to produce all ones:

000 101 010 101 000 110
111 010 101 010111 001
111 111 111 111 111 111

This second approach leads to the suggestion of a method for determining
the complements of octal numbers without converting them to binary. Since the
sum of two binary complements must be all ones, the sum of two octal numbers
which are complements must be all sevens. Remember that 1115 = 7g.

It is obvious, then, that we can determine the complement of an octal
number by simply subtracting it from the octal number representing a binary
number which is all ones.

The complement of 101 100 010 can be determined as follows:

101 100 010 = 542 777
-542
235 = 010 011 101

In the case of a twenty bit number, the complement must be determined by sub-
tracting it from that number which represents all twenty bits equal to 1. This
number is 11 111 111 111 111 111 111 0or 3777 77 7. The first digit is only

a three because the two left-most bits are left over after dividing the twenty bits
into groups of three starting at the right. Thus, the twenty bit complement of
456 is determined by subtracting 456 from 37777717.

37TTTTT 3T7T7TTTT

- 456 -1256000

3777321 Similarly, 2521777
3. Two's Complement

The two's complement is closely related to the one's complement and is
of particular use in the 1080. The two's complement of a binary number is
simply defined as the one's complement plus one,

The two's complement of 1 101 is 0 010 + 1 = 0 011.

The two's complement of 123g = 777
-123
654+1 = 655g.

Using 20-bit numbers, the two's complement of 5 3 2 6 is found by

377777
- 5326

3772451+1=37724524.

It is also possible to perform this conversion in one step. Instead of subtrac-
ting the number from 3777777, we can subtract it from 3777777+1, which we
will write in whatever form is most useful for this subtraction, To form the
two's complement of 1256 we subtract 377777"8".

- 125 6

377652 2
To form the two's complement of 123560, we subtract 37777''8"0.
- 1235 6 0
36542 2 0

Two's complement arithmetic is of great importance because the 1080,
as well as a number of other minicomputers, utilizes the two's complement of
a number as its negative. The total range of unsigned numbers that can be rep-
resented in the 1080 is 0 - 3777777g. Arbitrarily, half of all these numbers are
called positive and their two's complements are then called negative. The range
of signed numbers then looks like this:

o
2000000 3777777 1 1777777

Negative numbers Positive numbers

Close examination of those numbers in the negative range reveals that
they all have one thing in common: the leftmost bit, bit 19, is set to one, Con-
versely, all positive numbers, including zero, have bit 19 set to zero, Conse-
quently, bit 19 is called the sign bit and can be independently tested to allow a
decision on whether a particular number is negative,

This division of numbers into positive and negative ranges is somewhat
less arbitrary than it first appears since arithmetic manipulations can be per-
formed in a consistent manner, Let us suppose that we start adding ones to
some large binary number. The following will happen:

37771775

3777776

3Tt

*0 000000 *At this point overflow occurs and there is a carry
0000001 to the 21st bit,

0000002

0000003

The same sort of thing would happen if we started adding ones to -3. The
sequence would be -3, -2, -1, 0, 1, 2, 3. In fact, as far as the computer is

10

concerned this is what we have done. The two's complement of 3 is 37777758
and thus represents -3 to the computer,

As an additional check we add 3777775 (or -3) to +3:

3777775
3

(1) 0000000 and get zero as we expect. The 21st bit, if it existed,

would be set by this operation as indicated by the (1).

4, Subtraction

The 1080 performs subtraction in the same manner as we are taught to do

in algebra: by changing the sign and then adding, The sign is changed in the

computer by negating or, in other words, by taking the two's complement of the
number. Thus, if we wished the computer to subtract 5 from 7 it would proceed

as follows:
+7 = 7
-5 = 3777773
0000002

In other words 7 - 5 =2

5, The Logical And

One operation that computers can perform easily that is not generally
performed in arithmetic is the logical AND. The result of a logical AND be-

tween two bits is found as follows:

a. If both bits are ones, the result is one,
b. If both bits are zeros, the result is zero.
c. If the two bits are different, the result is zero,

This is represented in a truth table below:
01
0(0 0
1101

The AND function can be thought of as a masking operation between
two numbers. What you want to examine remains the same; what you
are not interested in examining, becomes 0, If you wish to examine
only bit 12 of a number, perform a logical AND between that number and
another number having only bit 12 set, Remembering that we number
bits from the right starting with 0, that mask would be 0010000g.

Thus, the logical AND between 3456732 and 0010000 produces:

3456732 11 100 101 110 111 011 010
0010000 00 000 001 000 000 000 000

0010000 or, in binary 00 000 001 000 000 000 000

If we wish to examine only one octal digit, we need only AND that digit with all
ones, and AND all other digits with zeros. ANDing one octal digit with ones is
the same as ANDing it with a 7. To examine the fourth octal digit of a twenty
bit octal number, we perform the following operation:

3456732 11 100 101 110 111 011 010
0007000 00 000 000 111 000 000 000

0006000 or, in binary 00 000 000 110 000 000 000

6. The Inclusive OR

Another function easily performed electronically by a digital computer is
the inclusive OR. For this operation, the following rules apply for the ORing

of two bits.

a, If both bits are zero, the result is zero.
b. If the bits differ, the result is one.
c. If the bits are both ones, the result is one.

Put in truth table form, the inclusive OR is represented as follows:

= ole
Wy o

0
1

The inclusive OR is used to find out whether bits are turned on in either
or both of two computer words. In other words, the result shows which bits

have ones in common,

The inclusive OR between octal digits is shown below:

000 O 010 2 100 4 101 5
m o7 110 6 o1 3 001 1
111 7 110 6 111 7 101 5

11

7. Exercises
(1) Find the one's complement of the following numbers:
01110 111 011 101 110 001 00 111 101 010 110 100 100

00 000 000 000 101 111 000 10 111 101 101 111 010 011

(2) Find the two's complement of the above numbers,

(3) Perform the following subtractions using two's complement
octal arithmetic, Assume twenty bit results.

56342 1067542 11056423
- 315 -21345271 -3254321

(4) Write the positive octal number corresponding to each of
the following negative octal numbers:

37717560 2456120 3453210

(5) Perform the AND operation between these octal numbers:

7 5 376 3770770
3 2 123 1246 2317

(6) Perform the inclusive OR operation between the above octal
numbers,

12

II. BASIC PROGRAMMING CONCEPTS

A. Addresses

Each 20-bit word in the 1080 has associated with it both an address and con-
tents. The contents are the actual configuration of the bits in that word and the ad-
dress is its sequential location in memory. The addresses are simply numbers
describing this location, beginning with address zero. Since the computer deals
with addresses in binary form, it is convenient to represent them as octal numbers
just as the contents of words are represented in octal,

For mechanical reasons, memory is provided in sections of 409610 words (or
4K) called stacks. The typical 1080 system consists of one stack to be used for pro-
gram storage and one or more stacks to be used for the storage of signal averaged
data., These two sections are referred to as program memory and data memory re-
spectively. This distinction is quite arbitrary and does not affect the amount of
memory that can be allocated for either purpose in any way.

The addressing of the first 4K stack, usually utilized for program memory,
begins at address @ and is numbered sequentially through 7777g. This comprises
10000g words of storage or 4096, Additional stacks set aside specifically for pro-
gramming would begin at 10000 and run through 17777, at 20000 through 27777 and so

forth,

The section of memory set aside for data accumulation under wired program
control begins at address 100000g and proceeds through 107777 in the first 4K. Each
additional stack is addressed sequentially from there. The only difference in mem-
ory set aside for data accumulation is that signal averaging and display automatically
begin at address 100000 if the Readout or Measure Memory Allocation switches are
set to Starting = #.

In a 12K machine, the memory layout looks like this:

PROGRAM UNUSED - -— DATA MEMORY ——— ~——

s . R
.. 7 s .
l l LA | l

0 7777 100000 ——-— 107777 110000

nrer7

The program memory can be used for data storage however, so that data can be
signal averaged into all stacks. The program stack is utilized during data acquisition
or readout if the size of memory selected is greater than the number of stacks in data
memory. In this case, the Program Protect pushbutton must be out, If this button is
depressed, the first 4K of program memory is protected from destruction by the wired
processor, It is never protected from access by the stored program processor.

14

During data acquisition, the layout of memory appears to be as shown below
to the wired processor:

y————— DATA MEMORY PROGRAM

| |

100000~——— ——I07777 IOO0C —— 17777 @ e 7777

The program memory section would be accessed only if more than 8K was selected
as the Measure Memory Allocation Size,

While the stored program processor generally runs programs located in the
first 4K, it is not restricted to this section of memory. The processor can be started
at any existing address and will automatically execute instructions sequentially from
that point. Generally, however, 4K is sufficient for all data reduction and theoretical
programs, and the remaining memory can be utilized for data storage. The number
of memory stacks allocated to program (addresses below 100000g) vs. the number
allocated to data (addresses above 100000g) can be manually adjusted by a switch set-
ting within the 1080,

B. Registers Used in the 1080

1. The Instruction Register

As mentioned above, the programs which the stored program processor
executes are simply sequences of binary numbers stored in memory. They are
completely indistinguishable from signal averaged data. They differ only in how
they are interpreted. A binary number can be called into the arithmetic unit and
added to another piece of digital data from the analog-to-digital converter and the
sum stored in memory. In this case, the number is a data point in some spec-

trum,

On the other hand, the number could be brought from memory into the
Instruction Register and interpreted as a command to perform one or more ele-

mentary logical operations which comprise the 1080's instruction set. The actual
operations performed are determined by which bits are set in a particular instruc-

tion word. For instance, let us consider an elementary instruction register only
4 bits long.

FETCH | ADD SUB | STORE

Upon starting, the stored processor is given some initial address from
which to retrieve the first instruction. This instruction is brought from core
memory into the instruction register and interpreted. In our elementary

Instruction Register, there are four possible operations to be performed: get-
ting data, addition of data, subtraction of data, and storing of data. Which of
these operations is actually performed is dependent on the bits set., If the in-
struction was 1000, this would instruct the processor to fetch data from memory.
If an addition operation were to be performed, the instruction would be 0100, and
if both a fetch and an add were to be performed the register would contain 1100.

The 1080 Instruction Register is tied to 20 lights in the middle row of the

Display Control section of the 1080. It can be observed while the processor is
running,

2, The Program Counter

After each instruction is performed, some part of the stored processor
must specify the address from which the next instruction is to be retrieved.
This register is called the Program Counter, It always contains the address
of the instruction to be executed after the current one. The Program Counter
is tied to the bottom row of lights,

3. Accumulator

The accumulator is the one register that can be manipulated by the pro-
grammer, Numbers can be added or subtracted and examined there. Multipli-
cation and division by powers of two also take place there as do logical ANDs
and ORs., Numbers are fetched from memory and displayed there for various
purposes and numbers in the accumulator can be stored in locations in memory.

The accumulator consists of 20 bits and a 1-bit extension called the link,
If an addition is performed in the accumulator and the result requires more than
20 bits to represent, the overflow will be found in the link.

The accumulator and link are tied to 21 lights on the top row of the Dis-
play Control section of the 1080. They can be observed while the processor is
running, The accumulator (AC) link, instruction register and program counter
are pictured below,

A S 2 R e A I R 2 R Y R R Y N
A & A4 A A A & & P P P P O B e b e

CIF WO SRAMIN CRAD PO SNGEE AT (BRI SHARE PLHIE Slyf A0 rowis

NICOLET INSTRUMENT CORPORATION

vorep vyt

15

16

4, The Multiplier-Quotient Register

The multiplier-quotient register, or MQ, is used in multiplication,
division, bit inversion and logical OR operations. Since it is not tied to a
row of lights it can only be examined by transferring its contents to the AC.

5. The Zero Test Register

The Zero Text Register is a piece of logic that tests a number for
zero, If the number is not zero nothing happens, If the number is zero
the program counter (PC) is incremented by 2 instead of by 1. This
causes the processor to skip the next instruction in sequence, In other
words, if the zero test register detects a zero, the next instruction is
skipped.

C. Programming the 1080 Using Group I Instructions

1. Mnemonics

All of the arithmetic operations that the 1080 can carry out are performed
in a set of instructions called Group I Instructions. These instructions involve
addition, complementing, and incrementing as well as transfers between the
accumulator, memory and the Zero Test Register,

The only meaningful instruction to the computer is the combination of
ones and zeros loaded into the instruction register, These combinations are so
abstract, however, even when abbreviated in octal, that they are difficult to re-
member and apply directly, For this reason, it is convenient to develop a series
of abbreviations for each instruction which remind us of their actual function,
These abbreviations are called mnemonic codes. They have no direct meaning
to the computer, but each mnemonic has a corresponding binary equivalent which

is meaningful to the computer. We will see in Chapter V that the Assembler

computer program translates these codes into their binary equivalents, freeing
the user from ever having to know them.

2. Subgroups of Group I Instructions

We will first indicate the aétual operations which the programmer can per-
form using Group I instructions, and will subsequently show the value of each of

these in small programming examples.

a, Loading the AC and Memory

The two registers AC and memory, where memory means any mem-
ory location, can be examined and its contents transferred elsewhere

using the two instructions

ACC accumulator
MEM memory

b. Addition and Subtraction

The 1080 can perform addition or subtraction between the accumu-
lator (AC) and memory. In each of these instructions, A represents the
AC and M represents memory,

A+M accumulator plus memory

A-M accumulator minus memory
M-A memory minus accumulator
c. Incrementing and Decrementing

Both the AC and memory can be incremented or decremented using
these instructions:

APO accumulator plus one

MPO memory plus one

AMO accumulator minus one

MMO memory minus one

AMP accumulator plus memory plus one

d. Complementing

The one's complement of memory or the AC is taken as follows:

ACP complement of the accumulator

MCP complement of memory

ACP accumulator plus the complement of memory
CAM complement of the accumulator plus memory

e, Negation

Numbers in the AC or memory can also be negated. Remember that
negation means taking the two's complement, or taking the one's comple-
ment and incrementing,

ANG negative of the accumulator
MNG negative of memory

17

18

f. Constants

Several constants can also be created for direct use in program-
ming. This saves the necessity of storing the constants in some memory

location,
ZER Zero
ONE one

MON minus one
MTO minus two

g. Logical AND

The AND instruction performs a logical AND between a memory
location and the accumulator. Thus, there are always two operands
regardless of the fact that the mnemonic itself does not necessarily imply
them. The AND produces a 1 if and only if both operands have a 1 in
that bit position and a zero otherwise. It is most commonly used to
"mask" particular bits of a word and examine them separately. For
example to examine bits 0-2 of a word containing 3765745, we would
AND that word with 0000007, giving 0000005, or the contents of bits 0-2,
with all other bits set to .

3. Destinations

All of the above instructions specify a source, either the AC or memory
or both, but do not specify the destination, or the place in which the result is to
be put. There are three possible destinations specified in the 1080, represen-
ted by the three suffixes A, M and Z, meaning accumulator (A), memory (M),
and zero test register (Z). They may be specified in any combination and in

any order,

For instance, to add the contents of the accumulator to a memory location
we simply write

A+MM

This instruction is read "accumulator plus memory to memory. " In this case
the accumulator is unchanged, but the sum is stored in memory. We could per-
form the same addition leaving the memory location intact by writing

A+MA

which simply means accumulator plus memory to accumulator. The AC changes
but memory remains unchanged. We could perform this addition without changing
either register if we simply wished to test the result for zero

A+MZ,

This is read ""accumulator plus memory to zero test register,' or add the AC
and memory and skip if zero. In this case, the two numbers are summed and
if their result is zero, the next instruction is skipped. Note that in every case
only the destination register is changed. The source register is unmodified.
Thus

ACCM

places the contents of the AC into memory. Memory is changed, the AC is not,

4, Syntax

A Group I Instruction can thus be divided into two sections: a source
and a destination, These two sections can also be referred to as an operator
and a suffix, where the operator is one of the three-character codes given
above, and the suffix is one or more of the destinations A, M and Z, The suf-
fixes can be given in any order, For example

A+MMZ is the same as A+MZM

and both mean add the AC to memory, store the result in memory, and skip if
the result is zero, Note that there is no space between the operator and the
suffixes, While this is a minor distinction now, it will become more important
when we discuss the Assembler program for translating the mnemonics into

binary code.

D. Addressing Modes

1. Bit Assignments

The actual bit assignments in the Instruction Register for Group I instruc-
tions are as follows:

9 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 | 0
AlIM|Z

_.A%JORDEESS__H OPERATOR J L SUFFIX 11 OPERAND (ADDRESS)

Bits 13 through 17 specify which Group I instruction, and bits 10 to 12 specify
which of the three suffixes are used, Up to this point we have not discussed how
a particular memory location is accessed as data, This is accomplished using
bits 0 - 9 to represent the data and bits 18 and 19 to represent the addressing
mode. There are three such addressing modes, immediate, direct, and

indirect,

19

20

2. The Immediate Mode

In the immediate addressing mode the actual instruction contains the data.
Bits 0 - 9 contain the actual binary number operated upon. Bits 18 and 19 both
contain zeros to indicate the immediate addressing mode:

9 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
010 AlD|Z
L WMEDIATE . il . GROUP I Sl sueEEs L e DATA e 1

MODE T INSTRUCTION

Since the instruction is the data the M suffix or destination cannot be used. If
it were this would imply that an instruction could change itself, This is not

possible in the 1080,

The symbol we will use to specify the immediate mode is the left paren-
thesis (. We can place any number to the right of the parenthesis that can be
represented in the 10 data bits. This number range is between # and 1777g.

For instance, to place 2308 in the AC we give the computer the instruction

MEMA (230 /LOAD 230 INTO THE ACCUMULATOR

This instruction means ''take the number in the right hand ten bits of the instruc-
tion and load it into the accumulator.'" The data location is the right hand half

of the actual instruction word. The comment following the slash (/) is purely to
remind us what operation we are performing. It is not interpreted by the com-

puter in any other way.

To add 15g to the accumulator we write

A+MA (15 /ACCUMULATOR PLUS MEMORY TO ACCUMULATOR

If we performed the above two instructions sequentially the AC would contain
930 at the end of the first instruction and 245 at the end of the second instruction.
All of these numbers are, of course, in octal.

In the immediate mode, any of the Group I instructions can be performed,
to extend the range of the numbers which can be represented., While bits 0 - 9
can only represent numbers from 0 - 1777, negative numbers can be created by

such instructions as

MNGA (115 /NEGATIVE OF MEMORY TO ACCUMULATOR

which means place the negative of 115 into the AC, or place 3777663 in the AC,
Similarly, subtraction can be performed in the immediate mode.

MEMA (1015 /MEMORY TO ACCUMULATOR
A-MA (230 /ACCUMULATOR MINUS MEMORY TO ACCUMULATOR

This example causes 1015 to be loaded into the AC in the first instruction and
230 to be subtracted from it in the second. The AC then contains 565,

The following instruction allows the programmer to test the AC for any
number accessible in the immediate mode:

A-MZ (215 /SKIPIF THE AC IS 215

A skip is performed if and only if the AC is 215; that is, if the AC minus 215
equals zero. This is the first elementary decision that the 1080 can make.

The range of numbers that can be represented in the immediate mode is
from -2000 to +2000g. The extremes are shown below:

MPOA (1777 /SET THE AC = 1777+1, OR 2000
MCPA (1777 /SET THE AC TO THE COMPLEMENT OF 1777

The complement of 1777 is found by

3777777
- 1777
3776000

The number 3776000 can be shown to be the two's complement of 2000 or the
negative of 2000 by

3776000
+ 2000
(1) 00000 00 where the (1) is the carry.

3. The Direct Mode

In the direct addressing mode, the right hand ten bits of the instruction
refer to an address from which the data is taken, The direct mode is symbol-
ized by one or more spaces between the last suffix and the beginning of the
address istelf, In this mode bit 19 is turned on indicating that the instruction

references memory,

9 18 17 e 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

| 1@ AIM|Z

- D'M%EDCET___J — ——‘—wg?ggg'rlmw)L SUFFiX S b— . ADDRESS OF DATA ——— e
MEMA 123

means get the contents of address 123 and place that in the accumulator. In this
mode, the user is no longer limited to 10 bit numbers or their complements,
since the entire 20-bit contents of that address is moved.

22

Other examples of the direct mode include

ACCM 406 /PLACE THE CONTENTS OF THE AC IN ADDRESS 406
A+MM 201 /ADD THE AC TO MEMORY LOCATION 201
MNGA 372 /PLACE THE NEGATIVE OF ADDRESS 372 IN AC

A-MMZ 514 /SUBTRACT THE CONTENTS OF LOCATION 514 FROM THE AC

/PLACE THE RESULT IN LOCATION 514 AND SKIP IF ZERO

With this information, we can now write a simple program to add three
numbers together. We will assume that these numbers are already stored in
locations 100 - 102, and that the result of the addition should appear in the AC
when the addition is complete. As is good programming practice throughout,
we will comment each line to describe exactly what operation is being performed.

*g /SYMBOL TO INDICATE THE STARTING ADDRESS FOR THIS CODE

MEMA 100 /LOAD THE FIRST NUMBER INTO THE AC
A+MA 101 /ADD THE SECOND NUMBER TO IT

A+MA 102 /ADD THE THIRD NUMBER TO THAT

STOP /AND HALT THE PROCESSOR WITH SUM IN AC

The program starts by loading the contents of address 100 into the AC.
This is a jam transfer; the previous contents of the AC are lost. The contents
of address 100 are unaffected, The program next adds to that number the con-
tents of address 101. It does the same thing again, adding the contents of address
102 to that sum and then stops interpreting instruction at the STOP command. The
results of the addition are left in the AC and can be read from the lights on the

front panel,

4, Paging

Obviously, the ten bits representing the address can only represent addresses
from @ to 1777, although there are far more memory locations in the machine, In
order to conquer this problem, each memory stack has been divided into four pages
of 10241¢ or 2000g words each, They are laid out as follows:

| |] |
Yo T ~1777 2000 3777 4000 5777 6000 ————————— ————— 7777

The right hand ten bits of the instruction is then considered the page rela-
tive address, so that MEMA 123 accesses address 123 if on page ¢, address 2123
if on page 2000, address 4123 if on page 4000, address 6123 if on page 6000 and
so forth. The address of the beginning of the page is added to the relative address
by the hardware and that address is then accessed by the computer. Consequently
one can address any of 1023, other memory locations directly from any given

place in memory.

5. Indirect Mode

Obviously a computer that could only address 1024 locations by any means
would be inadequate for scientific purposes, where data arrays may be as large
as 32,768 points. A third mode of addressing is provided in which a full word
points to the actual address desired. In this mode, called indirect addressing,
a memory location on the same memory page as the instruction contains the
address of the word actually to be accessed. The "at" sign (@) is used to indi-
cate indirect addressing,

Address Mnemonic

200 MEMA @ 436 /GET THE CONTENTS OF 5370
201 ACCM @ 437 /AND STORE IT IN 6120

202 STOP /THEN HALT

436 5370

437 6120

The above program is read '"Get the contents of the address pointed to by

address 436 and then store this number in the address pointed to by address 437."

The result is that the contents of address 5370 are loaded into the AC from an
instruction located on another memory page and this number is then deposited in

address 6120.

The usual use for the indirect mode is in accessing arrays of data stored
in the data section of memory. It is not always necessary to reserve a pointer
for each element in such a list, however, since one can set a pointer to the top
of the list and then advance the pointer from one element to the next in a loop.
The bit assignments for indirect addressing are the same as for direct addres-
sing except that bit 18, the indirect bit, is one.

To access only two or three locations in data memory, one can operate
through a set of pointers. The following program adds the first and last points
of a 4K data array and stores the result in the first point. Remember that data
memory begins at address 100000g.

/PROGRAM TO ADD THE FIRST AND LAST POINTS OF DATA MEMORY

*g /STARTING ADDRESS OF THE PROGRAM
MEMA @ 10 /GET THE LAST DATA POINT INDIRECTLY
A+MMA @ 11 /ADD IT TO THE FIRST, STORE AND

STOP /STOP WITH RESULT IN AC AND IN MEMORY
*14 /POINTERS STORED AT ADDRESS 18 AND 11
107777 /ADDRESS OF LAST POINT IN 4K ARRAY
100000 /ADDRESS OF FIRST POINT IN ARRAY

23

24

This program accesses the contents of address 107777 and places it in the
AC. This number is then added to the contents of address 100000 and the result
stored in location 100000. The sum is also placed in the AC, since both the A
and M suffixes are used. The sum can then be read from the AC lights when the

program stops.

6. Exercises

(1) Explain why the M suffix cannot be used in the immediate
addressing mode,

(2) The second program shown in section D-5 above was loaded
into the computer and executed. Despite the fact that it oc-
cupied only locations 0, 1 and 2, the Program Counter showed
a value of 3 when the program halted, Explain this.

(3) What will the AC be at the end of this program?

MEMA (123
MNGA (456
A-MA (3
STOP

(4 What would the configuration of a 1080 have to be for the
following instruction to serve a useful purpose?

MPOM @ 113
*113
10000

OI. PROGRAMMING THE 1080 IN ASSEMBLY LANGUAGE

A, Labels

By the end of the previous chapter, it became apparent that it would be extremely
difficult to keep track of the addresses of every instruction and constant used in a rel—
atively lengthy program so that they could be accurately addressed. It is possible,
however, to represent the actual addresses symbolically and let the Assembler program
take care of the translation not only of the instructions into binary equivalents, but also
take care of the translation of symbolic addresses into their binary equivalents.

The use of labels for various addresses simplifies the task of the programmer
in keeping track of memory address allocation. A label is a name given an instruc-
tion or a constant so that it can be referred to in the program. The following rules

apply to such labels:

(1) The name may be between 1 and 6 characters long., Labels with
differing characters beyond the sixth are considered identical.

(2) The first character must be an alphabetic one.
(3) The label must not contain any embedded blanks.

(4) An address is defined as labeled by giving it a name followed
by a comma.

(5) A label may not contain a dollar sign,

The following example is given using both absolute addressing and labeled addres-
sing. The Assembler program would treat these as equivalent,

*g Absolute Address *g
START, MEMA LABELI g MEMA 4

A+MA @ LABEL2 1 A+MA @ 5

ACCM TEMP 2 ACCM 6

STOP 3 STOP
LABEL1, 2123004 4 2123004
LABEL2, 4230 5 4230
TEMP, i 6 g

The four labels used in the above program are START, LABEL1, LABEL2
and TEMP. Only the last three of these are referred to by the program.

25

26

This program loads the contents of location 4 into the AC, adds to it the contents
of location 4230 (by indirect addressing) and stores the result in location 6. Note that
there is no need to keep track of addresses if labels are used to refer to the address
of memory locations.

Here it should be emphasized again, that the mnemonics for various instruc-
tions are meaningless to the computer per se. They are interpreted by a computer
program called the Assembler into binary numbers and addresses. This translation
simply is a set of table look-ups in which the instruction MEMA 123 is decomposed
into MEM, A and 123. The value for each of these components is looked up and the
result combined to give the final binary instruction.

B. A Program to Add 10 Numbers Together

In the case of the addition of two or three numbers, it is not unreasonable to
address each of them individually. There is little or no efficiency to be realized in
any more elaborate addressing scheme. However, if we wish to sum 10 or more
numbers together, it is desirable to use the same pointers over again, In writing
any program it is desirable to follow the general outline given below:

(1) Define the task clearly in good grammatical sentences.
(2) Draw a flowchart of the program's logic.

(3) Write the program code, commenting it thoroughly.

(4) Test and debug the program.

We will state the problem as follows, This is a program to add
ten numbers together that are already stored in memory starting at
address 100000, Indirect addressing will be used to advance a pointer
down a list. A flowchart of the program might look like this:

SET THE
DATA COUNTER
TO 10

|

SET THE ADDRESS POINTER
TO THE FIRST ELEMENT
IN THE LIST

|

[zero THE AccumuLATOR |

— ADD THE ELEMENT POINTED TO
TO THE SUM IN THE AC

IADVANCE THE DATA POINTERJ

I_____N_O. DECREMENT THE COUNTER
!

S IT=01

lYES

[sTop with sum i ac J

The program to accomplish this task, properly commented, is given below:

/PROGRAM TO ADD TEN NUMBERS TOGETHER

*g /STARTING ADDRESS ZERO
START, MEMA (12 /SET 1¢ (BASE-16) INTO COUNTER
ACCM COUNT
MEMA PNTSET /SET THE DATA POINTER
ACCM POINT
ZERA /SET AC =@
LOOP, A+MA @ POINT /ADD EACH DATA POINT INTO AC
MPOM POINT /ADVANCE THE POINTER
MMOMZ COUNT /ARE ALL 16 DONE ?
JMP LOOP /NO, DO ANOTHER POINT, JUMP BACK TO LOOP
STOP /YES, HALT WITH RESULT IN AC
COUNT, 4 /POINT COUNTER
PNTSET, 1099060 /BEGINNING OF DATA
POINT, [/} /VARIABLE POINTER

The above program introduces the instruction JMP or jump. This is simply an
unconditional jump to the location specified, During a JMP instruction, the address
specified is transferred to the program counter so that the next instruction to be exe-
cuted is fetched from memory at the address specified by the jump, The JMP is a
pseudo-Group I instruction. Both direct and indirect mode addressing are legal al-
though the immediate mode is prohibited and is in fact meaningless.

This program utilizes a loop of logic to add all ten numbers together with the
same pointer pointing sequentially to each element in the list, The program starts by
initializing a counter to 12g (or 10;) and setting the pointer POINT to address 100000,
The AC is zeroed and the contents of address 100000 is added to the AC. Then POINT
is incremented from 100000 to 100001 and the counter decremented from 12 to 11. The
program returns to statement LOOP where the number is added into the AC which is
pointed to by POINT, POINT now contains 100001 so that the second number in the
list of numbers is thus added to the AC. Then the pointer is incremented to 100002
and the counter decremented from 11 to 10. This loop continues until all 10 numbers
have been added in the AC indirectly, At this point the counter has been decremented
to 1. When the program passes through MMOMZ COUNT after the last addition, the
counter is decremented to @, and since the result is zero the instruction JMP LOOP
is skipped. Instead, the instruction STOP is executed, halting the program with the
sum in the AC,

The final step in the sequence of good programming practice, testing and debug-
ging the program, is usually accomplished by loading the program into memory, exe-
cuting it, and comparing a known result with that found by the program. More exten-
sive debugging techniques will be discussed in Chapter VI,

27

28

C. Communicating with the Teletype

1. Introduction

The Teletype is the input/output (I/0) device normally used for reading
in binary tapes, entering instructions and data. It consists of four separate
elements: (a) the keyboard, (b) the printer, (c) the tape reader and (d) the

tape punch.

During offline (LOCAL) operation, all four of these sections are mechan-
ically linked, so that typing a character produces an impulse to the printer and
punch mechanisms causing that character to be printed and (if the punch is
turned on) punched. Similarly, reading a character into the tape reader causes
it to be echoed by the printer and punch, However this information is not sent

to the computer,

During on-line (LINE) operation, the computer is connected to the Tele-
type, the reader and the keyboard are logically equivalent and the printer and
punch are equivalent. A computer command to read from the Teletype causes
the keyboard-reader to be queried and a command to print on the Teletype prin-
ter will also cause tape to be punched if the punch is turned on.

However, it must be emphasized that there is no link whatever between
the keyboard-reader and the printer-punch during on-line operation. In fact,
the only way the Teletype can be made to influence computer operations is if the
computer has been specifically programmed to read and print on the Teletype.

2. Switch Functions

LINE-OFF-LOCAL: This switch is located below and to the right of the
keyboard. It is the main power switch and controls whether the Teletype 'talks"
to the computer or only to itself. In the LINE mode, the Teletype sends out sig-
nals to the computer which it can recognize depending on how it has been pro-
grammed. In the LOCAL mode the Teletype acts just like a typewriter, It is
wholly dissociated from the computer and can be used, for instance, to generate
tapes while the computer is performing some other function,

START-STOP-FREE: This control on the tape reader controls tape motion,

In the FREE position, the sprocket wheel moves freely. The reader should al-
ways be set to FREE during tape loading and unloading to prevent possible tear-
ing of the tape. In the STOP position the sprocket wheel is immobile and in the
START position, tape can be read by the computer.

Tape Punch Switches: If ON is depressed, the printing of any character
will cause its duplication on the punch., Depressing REL (release) allows one to

pull out old tape before loading in a new roll, B.SP, backspaces the tape one
position each time it is firmly depressed. This is useful for correcting tapes

prepared off-line,

3. Reading an ASCII Paper Tape

All characters punched by the Teletype are punched according to the
ASCII code (American Standard Code for Information Interchange), Paper
tapes punched contain eight rows of holes, representing binary numbers from
0 to 27-1, or octal numbers from 0 to 377g. The binary to octal conversion is
performed as usual, by grouping the binary bits into groups of three and con-
verting each group to its octal equivalent. Hold the tape as shown below and use
the conversion table at the right. Unlike tapes produced by actual computer pro-
grams, this one has had blank lines inserted between the punched ones to improve

legibility for this example,

ASCII character Octal equivalent

A 301

B : 302

I C : 303
D : 304

Tape E . 305
Motion 1 * 0 261
2 oo - 262

l 3 oo - 263

4 es o 264

5 °s o o 265

rubout e600c 000 377

Examining the first line of the tape, the binary number 11 000 001 is
found. Since 115 = 3g, 0003 = 0g and 001y = 1g, the number is 301g. After
consulting the ASCII character table in Appendix I one finds that this is the

octal code for the letter A, Similarly, the sixth punched line contains the
number 10 110 001 or 261g. This is the ASCII code for the number 1.

Since all ASCII codes range between 200g and 377g, a punched tape can
always be recognized as ASCII rather than binary if its leftmost column, the

200 column, is punched.

29

30

+, Programming the Teletype

The 1080 computer operates at a rate of one memory cycle every two
microseconds. It takes two such cycles to execute most instructions; instruc-
tions involving indirect addressing take three memory cycles. The Teletype,
on the other hand, operates at a maximum rate of 10 characters per second,
either sending or receiving, In order for the computer to communicate with
the Teletype accurately, it is therefore necessary that it be slowed down to
the speed of the Teletype. This is accomplished using a ready flag, a one bit
register which indicates whether or not the Teletype is ready to transfer infor-
matijon. If the flag is set to one, data can be transferred, but if the flag is set

to zero, the Teletype is not ready.

There are two sections to the Teletype in LINE mode, the keyboard-
reader and the printer-punch, Each of these sections has a ready flag and a
set of instructions interrogating that flag and directing transfer of data.

The keyboard-reader uses the following two instructions:

TTYRF Skip if the reader is ready to transfer information
RDTTY Read the keyboard-reader into the AC.

The instruction TTYRF tests the ready flag of the keyboard-reader and if the
keyboard has been struck, or if there is tape in the reader and the reader is
turned on, the next instruction is skipped. The instruction RDTTY reads the
keyboard reader buffer into bits 0-7 of the AC. Each character on the keyboard
is in ASCII code, eight bits long, but any combination of bits, whether ASCII or
not, will be correctly transferred by the Teletype reader.

A typical routine for reading the Teletype would be

Ti, TTYRF /WAIT FOR READY FLAG
JMP T1 /KEYBOARD NOT STRUCK, JUMP BACK
RDTTY /READ KEYBOARD-READER INTO AC

This program waits in the two instruction loop TTYRF, JMP T1 until either the
keyboard is struck or the tape reader is turned on with tape in it. When one of
these conditions occurs, the ready flag goes up and a skip is performed, bypas-
sing the instruction JMP T1, The instruction RDTTY is then executed and the
character is transferred to the lowest 8 bits of the AC.

The printer-punch has an analogous set of instructions:

TTYPF Skip when the printer-punch is ready
PRTTY Print the character in bits 0-7 of the AC

The printer is considered ready when it is not printing a character,

Let us now consider a short routine to print the message NIC.

MEMA (316 /LOAD THE ASCII CODE FOR "N" INTO THE AC

P1, TTYPF /WAIT FOR PRINTER READY
JMP P1
PRTTY /PRINT THE N
MEMA (311 /GET THE CHARACTER "I"
P2, TTYPF
JMP P2
PRTTY /PRINT THE I
MEMA (303 /ASCII "C"
P3, TTYPF
JMP P3
PRTTY /PRINT THE C
STOP

This program sequentially loads the ASCII codes for N, I and C into the printer
buffer, waits for the printer to be ready and then prints each character, A
typical routine for getting the Teletype to behave like a typewriter would be

T1i, TTYRF /WAIT FOR KEYBOARD TO BE STRUCK
JMP T1
RDTTY /READ CHARACTER INTO AC
P1, TTYPF /WAIT FOR PRINTER READY
JMP P1
PRTTY /PRINT CHARACTER
JMP T1 /GO BACK TO GET NEXT CHARACTER

The character remains in the AC after printing and can then be tested for some
particular value if, for instance, certain characters are used as commands by

the program,

When power is first applied to the Teletype, the reader flag can be in
either state, and the reader buffer may well contain garbage. For this reason
it is advisable to clear the reader buffer with a RDTTY command as the first
instruction in any program that will use the Teletype.

D. The JMS Instruction

It becomes apparent that it would be eminently desirable to be able to recall
certain sections of code without the necessity of rewriting them each time they are
needed in the program, This is particularly useful in the case of such common rou-
tines as those controlling reading and printing from the Teletype.

32

This can be done by the jump to subroutine or JMS instruction., When a JMS
instruction is executed, the following things occur:

(1) the address of the instruction following the JMS is deposited in
the first memory location of the subroutine,

(2) execution of instructions commences at the second location of
the subroutine,

In practice, this means that the computer keeps track of the location from which the
subroutine was called so that the program can return to the location following the
subroutine call by a JMP indirect instruction. Consider the following example, in
which a routine to type out a single character is converted to the subroutine TYPE,

/ROUTINE TO TYPE OUT "NIC"

*200
Address Mnemonic
200 MEMA (316 /PUT NIN AC
201 JMS TYPE /AND TYPE IT
202 MEMA (311 /PUTIIN AC
203 JMS TYPE /TYPE IT
204 MEMA (303 /PUT C IN AC
205 JMS TYPE /TYPE IT
206 STOP /AND HALT
207 TYPE, ¢ /THIS LOCATION WILL CONTAIN RETURN ADDRESS
210 Pi, TTYPF /WAIT FOR PRINTER READY
211 JMP P1
212 PRTTY /PRINT CHARACTER IN AC
213 JMP @ TYPE /AND EXIT TO LOCATION POINTED TO BY TYPE

This routine, when started at location 200, loads the value 316 into the AC. It
then executes a JMS instruction at location 201. The effect of this instruction is to
put the address of the instruction following the call into the first location of subroutine
TYPE. In this case, the address 202 is placed into location 207. The TYPE subrou-
tine is then executed in the usual way. At location 213 the instruction JMP @ TYPE
causes the program to jump to the location pointed to by TYPE, or location 202.
Address 2902 is therefore the next instruction executed.

Address 202 contains the instruction setting the AC to 311. The subroutine
TYPE is called again, this time placing the value 204 into location TYPE, Exit from
TYPE causes a jump indirectly to location 204 where the value 303 is set into the AC.
Finally the JMS TYPE at location 205 causes the value 206 to be stored in memory
location 207 (TYPE) and exit from TYPE causes the program to halt at location 206,
Thus, we have shown a subroutine that can be called from anywhere in memory and
from which correct exit is always assured. Subroutines can be called either directly
or indirectly, in either case the address following the actual JMS is placed in the first

location of the subroutine, It is important to remember that the first location of a
subroutine is destroyed by the JMS itself. For this reason the first location is gen-
erally written as a zero when the program is coded.

E, Shift Instructions

There are three kinds of shifts possible with the 1080: logical, arithmetic
and integer, The number of places shifted is controlled by an integer following
the instruction, which can vary from 0 to 17g. A logical shift is an end-around
shift of the bits of the accumulator, so that the instruction RLSH 1 causes all bits
to move one place right, and bit 0 to move around to bit 19, The direction is sim-

ply reversed by a left logical shift (LLSH),

The arithmetic shift is signed shift, It causes the sign bit to be propagated
to the right during right shifts, During left arithmetic shifts, bits are dropped off
the left end. Thus, if bit 19 (the sign bit) is 1, indicating a negative number, the
instruction RASH 3 will cause bits 0 - 18 to be shifted three places right. Bits 0 - 2
will be lost, bit 18 will have moved to bit 15 and so forth. The sign bit will be copied
into bits 18 - 16, making bits 19 - 16 all ones. This is illustrated below:

AC before instruction 10 001 010 110 011 100 101 (2126345 octal)

e

AC after instruction 11 110 001 010 110 011 100 (101 lost) 36126348

The RISH instruction causes the bits of the AC to be shifted right without regard
to sign, with the least significant bits '"falling off'' the end, While LISH does not exist,

LASH has the same effect.

The number of shifts performed in one instruction can vary from 0 to 1539 or
0to 17g. There is no need for successive shift instructions, since up to 15 shifts
can be performed in a single instruction, When the instruction is assembled, bits
0-3 contain the number of shifts to be performed. None of the shift instructions af-
fect the Link.

The number of shifts can be taken from the vertical display scale switch instead
of from bits 0 - 3 if bit 15 is set in a shift instruction. The bit assignments control-
ling the various shift instructions are shown below:

SHIFT GROUP

ARITH | LEFT

[INTG VDS 1 | o o o LOG [RIGHT
l9!8l7|6|5|4l3|2|lIO98765432IO
_—(__J
Lo s s o, ‘ | =¥
INTEGER SHIFT, RIGHT ONLY 1 = RIGHT
O=ARITHMETIC

1=LOGICAL

33

34

F. Test Instructions

The 1080 can test for several conditions and generate program branches when

these conditions exist or do not exist.

tions and generates a skip of the next instruction if the calculated quantity is zero:

A-MZ TEST1

JMP A
JMP B

/SUBTRACT TEST1 FROM AC AND SKIP IF RESULT IS ZERO

/JUMP TO A IF NON-ZERO
/JUMP TO B IF ZERO

It is possible to execute (EXCT) or skip (SKIP) on each of the following

conditions:

ZAC
MOAC
POAC
ACg

AC19
L

Zero accumulator

Minus one accumulator

Plus one accumulator

Bit § of the AC = 1, useful to test for odd or even numbers, or
rotation overflow

The sign bit = 1, the number is negative

The Link is one

The program can thus perform a skip when any of the above conditions is either
true or false. For instance, SKIP AC19 means skip if sign bit is one, while EXCT
AC19 means do not skip if AC bit 19 is one, but do skip if AC19 is zero. In other
words the next instruction is executed (EXCT) if and only if the condition AC19 = 1 is
met. This is best illustrated by the example below. The program accepts a charac-
ter from the keyboard and allows it if and only if that character is an octal number.
If it is an octal number, the program exits from the subroutine with that number in
the AC. Note that the ASCII code for integers is biased by 260g. The subroutine
TYPE (page 32) is not shown again here,

OCTIN,

ERR,

ECHO,
T1,

g
JMS ECHO

A-MA (260
EXCT AC19
JMP ERR
A-MA (10
SKIP AC19
JMP ERR
A+MA (10
JMP @ OCTIN
MEMA (277
JMS TYPE
STOP

g

TTYRF

JMP T1
RDTTY

JMS TYPE
JMP @ ECHO

/GET AND ECHO CHARACTER FROM TELETYPE
/SUBTRACT ASCII BIAS

/IS THE RESULT LESS THAN ZERO?

/YES, TYPE AN ERROR MESSAGE

/IS THE RESULT GREATER THAN 7°?

/NO, LEGAL OCTAL NUMBER

/YES, ILLEGAL INPUT

/RESTORE NUMBER BY ADDING 10

/AND EXIT FROM THE SUBROUTINE

/ASCII FOR QUESTION MARK

/TYPE QUESTION MARK

/AND HALT

/GENERAL PURPOSE TELETYPE INPUT ROUTINE
/WAIT FOR READER

/GET CHARACTER
/AND TYPE IT

The test for zero is part of the Group I instruc-

This program gets one character from the keyboard, and prints it using a TYPE
routine such as the one in Section D. It then examines it to see if it is in the right
range: @< n< 7. Ifthe character is less than g the ASCII typed will be less than 26§,
so that when the ASCII bias is removed, the result will be negative. This produces a
jump to the ERR routine where a question mark is typed. If the result is positive
(remember zero is positive), the number is tested for being greater than 7. If 10g is
subtracted from any legal number, the result should be negative. In this case, the
number is accepted. If the result is positive (or zero) the error routine is executed.

QG. Miscellaneous Instructions

The miscellaneous group contains the instructions that operate on the Link., As
mentioned earlier, the Link is a one-bit register which operates as an extension to
the accumulator, so that when overflow or carryout occurs, the state of the Link
changes. The Link is changed by an addition only if the result is transferred back to
the AC. Thus A+MM does not change the Link, but A+MA does. Since this change is
only meaningful if the original state is known, the following instructions can be used

on the Link:

CLL Clear the Link: setit= 0

STL Set the Link =1

TLAC Transfer the Link to AC bit 19. The Link and bits 0 - 18 of the
AC are unchanged

TACL Transfer bit 19 of the AC to the Link, Bit 19 is unchanged

It is also important to recognize that ZERA and MTOA change the state of the
Link,

Finally, the instruction STOP halts the stored program processor at the end of
a memory cycle,

A simple routine to add two numbers and test for overflow would be the following:

CLL /CLEAR THE LINK

MEMA NUM1 /GET THE FIRST NUMBER

A+MA NUM2 /ADD THE SECOND NUMBER TO IT
SKIP L /IS THE LINK = 17

JMP NOFLOW /NO OVERFLOW FOUND

JMP OVRFLW /YES, OVERFLOW FOUND

35

36

H.

Exercises
1. Examine the program below and decide what observable task it
performs,

START, ONEA

c4, ACCM SAVE
MEMA K
ANGM COUNT
MEMA SAVE
C1, MPOMZ COUNT
JMP C1
LLSH 1
JMP C#
COUNT, [/
K, 49099
SAVE, [/

2. What will the contents of the AC be when this program halts ?

*

START, MEMA (6
A+MA (7
JMS DUMMY
LLSH 1
A-MA DUMMY
STOP

DUMMY, §
JMP @ DUMMY

3. What will the contents of TEMP be when, if ever, this program
halts ?

START, MEMA (6
A-MAMZ TEMP
JMP START
MCPM TEMP
STOP

TEMP, [/

Write a program to type out THIS PROGRAM WORKS! on the
Teletype. Arrange it so that each 20-bit data word contains
two ASCII characters.

Write a program to add and subtract alternate numbers starting
at some point in memory, which will halt only if the AC becomes
zero. In other words, add the first location, subtract the second,
add the third to the AC and so forth.

Write a program to punch out an endless string of "paper dolls" on
the Teletype punch. Use the design below or design your own.

000 000
o (o) o (o]

000 000

(o] (o]
000000000000000000
©0000000000600000000000000000000

o o

OO0 00

0 O 0O 0

1. Hardware Multiply-Divide

The Hardware Multiply-Divide logic utilizes an additional register, called the
Multiplier-Quotient Register or MQ. It is used to extend the accumulator to contain
double precision integers, The instructions are described below:

TACMQ
TMQAC
BITINV

ZRAM
MULT

Transfer the AC to the MQ, AC unaffected

Transfer the MQ to the AC, MQ unaffected

Bit Invert the AC (used in Fourier transform routines)

Bit inversion means that bit 19 is interchanged with bit 0, bit 18 with
bit 1 and so forth, This can sometimes be used to take reciprocals.
Zero the AC and MQ

The 20-bit number contained in the MQ is multiplied by the num-
ber contained in the location following the MULT instruction. The
state of the AC is unimportant, At the completion of the instruc-
tion, the result is contained in the AC and MQ, with the high order
part in the AC and the low order 20 bits in the MQ,

To multiply 3 by 4 the following code would be used:

37

38

MEMA (4 /GET 4

ACCM MPLCND /STORE IN LOCN FOLLOWING MULT

MEMA (3 /GET 3

TACMOQ /PLACE IN MQ

MULT /PERFORM MULTIPLICATION
MPLCND, # /LOCATION OF MULTIPLICAND

ACCM HIWORD /HIGH WORD IN AC; STORE IT

TMQAC /GET LOW WORD

mode MEMA (4. The 4 is then placed in the location following the MULT instruction.

ACCM LOWORD /AND STORE IT

In the above program, the value 4 is loaded into the AC using the immediate

This location has the label MPLCND. The value 3 is then loaded into the AC and
transferred to the MQ. The MULT instruction then multiplies the contents of the
MQ (3) by the contents of the location following the MULT (4). The result, which
may be 40 bits long, is contained in the AC and MQ. The AC contains the high order
part, in this case §, and it is stored in HIWORD. The MQ is transferred to the AC
and the result, in this case 14g, is stored in LOWORD,

D1,

The following two instructions are used by the division logic:

RISH n

DIVD

Right Integer shift. Right shift of AC, with least significant bits
dropped off right end. (f < shifts < 17g)

Integer divide. The 38 bit dividend placed in the AC and MQ left
shifted one place, is divided by the contents of the location follow-
ing the instruction. At the conclusion of the operation, the quotient
is in the MQ and the remainder in the AC, The remainder is left
shifted one bit, the quotient is correct as it appears.

The reason for the shifting instructions is that it makes the treat-
ment of numbers in the floating point format more efficient. This
is utilized in the Floating Point Package version N11-20823.

For single precision division, especially in cases where the remainder is un-
important, the simple code below is representative:

/ROUTINE TO DIVIDE SINGLE PREC # DIVDND BY DIVSOR

MEMA DIVSCR /GET THE DIVISOR

ACCM D1 /PUT IT IN DIVD LOCATION + 1

MEMA DIVDND /GET THE DIVIDEND

LASH 1 /AND LEFT SHIFT IT

TACMQ /LOAD MQ

ZERA /CLEAR AC

EIVD /DIVIDE BY D1

TMQAC /GET THE QUOTIENT, IGNORE REMAINDER
ACCM QUOT /AND STORE IT

In the preceding case the contents of location DIVSOR is the divisor; it is loaded
into the AC, and then stored in location D1, the location following the DIVD instruc-
tion, The dividend is loaded into the AC from location DIVDND and then left shifted
one bit as required. This shifted result, which must still be less than 20 bits and
unsigned, is then stored in the MQ, Most important, the AC is now zeroed. If it
were not, the dividend would be the double precision AC-MQ, where the AC is merely
the duplicate of the MQ. The division of the contents of the MQ by the contents of D1
is then performed with the resulting quotient in the MQ and the remainder in the AC,
The remainder is ignored and the quotient is transferred from the MQ to the AC and
then stored in location QUOT.,

In the case of double precision division, it is necessary to shift both words left
one place, This is most easily done by checking bit 19 of the low order part before
the left shift. If bit 19 is one, then this one must be transferred to bit # of the high-
order word, In the example below the link is used as a flag to indicate whether bit 19
of the low order word was set or not, The link is cleared and then bit 19 of the low
word tested. If it is one, the link is set. Then the shift is performed and the shifted
word transferred to the MQ. The high-order word is loade into the AC and shifted
left one place, Then, if the link is set the shifted AC is incremented by one. This
sets bit @ to one if bit 19 of the low order word was one, In the example, it is as-
sumed that location DIVSOR already contains the divisor,

The division is then performed and the remainder appears in the AC. The re-
mainder is right shifted one place and stored in location REMNDR, Note that since
this entire division process is unsigned, the right shift is integer rather than arith-
metic. Finally, the MQ is retrieved and stored as the quotient in QUOT. This is
illustrated below:

/ROUTINE TO DIVIDE THE DOUBLE PRECISION NUMBER HIDIV - LODIV
/BY DIVSOR

CLL /CLEAR LINK

MEMA LODIV /GET LOW ORDER WORD

EXCT AC19 /1S BIT 19 SET?

STL /YES, SET LINK AS FLAG

LASH1 /SHIFT LEFT ONE PLACE

TACMQ /PLACE IN MQ

MEMA HIDIV /GET HIGH-ORDER WORD

LASH 1 /AND SHIFT IT

EXCT L /TEST LINK

APOA /INCREMENT AC IF BIT 19 WAS SET IN DBLDVL
DIVD /EXECUTE THE DIVISION

DIVSOR, nnnnnn /NUMBER ALREADY STORED HERE FOR DIVISOR
RISH 1

ACCM REMNDR /SHIFT AND SAVE THE REMAINDER

TMQAC /GET THE QUOTIENT

ACCM QUOT /AND SAVE IT

39

40

It should be noted that the hardware multiplication and division is unsigned,
and that the signs must be tested for independently by the user.

An inclusive OR operation is possible between the AC and MQ. The octal code
4341 (which has not been assigned a mnemonic) performs this logical OR operation,
As with every other 1080 instruction, the source (MQ) is unchanged, and only the

destination (AC) is changed.

For instance, to perform an inclusive OR between 2136412 and 0176310 the
following code is used:

MEMA OR1 /GET FIRST NUMBER
TACMQ /LOAD MQ
MEMA OR2 /GET SECOND NUMBER
4341 /PERFORM OR OPERATION
ACCM RESULT /RESULT OF OR IN AC, STORE IT
STOP

OR1, 2136412

OR2, 0176310

RESULT, #

J. General Input-Output Instruction Format

The input-output or I/0 instructions of the 1080 utilize the bit assignments
given below:

[1/0 INSTRUCTIONS]

) cLA v |sap| o | IS8 o1 {10p2| 10P3
9 18 I7 6 5 14 13 2 1 10 9 8 \7 6 5 4 3} 2 (]
~—
DEVICE SELECTION
CLEARS AC 0+ INTERNAL COMMAND
BEFORE TRANSFER 1 EXTERNAL DIVICE

ENABLES SKIP DURING IOPI OR lOP2

Bits 3 - 7 specify a particular device code, and bits 2, 1 and @ specify one of
three pulses called IOP1, IOP2 and IOP3, Each device can therefore have up to three
signals sent to it, associated with these three IOP's. Furthermore, one computer
instruction can issue all three of these pulses, since the occurrence of these signals
is dependent only on whether bits g, 1 and 2 are set,

Bit 14 has a special function in I/O transfers. If it is set, the AC is cleared
before the transfer. If it is not, a logical inclusive OR between the AC and the device
buffer occurs during input, Thus, RDTTY = 44453, so that the AC is cleared before
the loading of the AC from the Teletype occurs.

e 6 & & 00l 0l A a

K. Hardware Access Instructions

1. Display Instructions

The display instructions center around two digital to analog converters
for the x and y axes of the oscilloscope. These are devices that can be loaded
from the computer with digital information which is then converted to an output

voltage to drive the scope.

Both converters are 12-bits, with 14 bits available

as an option, In both the x and y axis, the additional two bits, if added, affect
the two least significant bits of the register.

The x-axis is controlled ty the following instructions:

Octal Code Mnemonic

214001 TACXD
4014 INCXD
4012 TACYD
4011 INTENS

105000 VDSH

Transfer the AC to the x-display register. Bits
2 - 13 of the AC are transferred to the x-axis
digital to analog converter, The AC is comple-
mented during the transfer.

The x-axis is incremented by one each time this
instruction is issued. This instruction is affected
by the Horizontal Display scale switch, so that
1024 increments will be full scale in the 1K posi-
tion, 2048 in the 2K and so forth.

Transfer the AC to the y-display register, Bits
8 - 19 of the AC are transferred to the y-axis
digital to analog converter. This axis is signed:
midscale is zero. :

Intensify point, This instruction issues a pulse to
the z-axis connector (pin J2) at the rear of the 1080
which will allow z-axis modulation o§ the display.

Vertical Display scale shift. The data in the AC is
shifted left (arithmetic) one place for each position
the Vertical Display Scale knob is set back from the

131K position.

41

42

The coordinates of the scope display in terms of the numbers that must
be set into the AC are given below for the 12 bit converters,

(0,1777400)

(0037774, 1777400)

0,0}pecces R R (0037774, 0)

(0,2000000)

(0037774, 2000000)

X-Y COORDINATES OF DISPLAY
USING R-BIT DAC'S

Programming the display is extremely simple, since it is not generally
necessary to consider either which bits are in which positions in the y-axis
register nor what the value of the x-axis display is. The y-axis vertical dis-
play scale is simply controlled from the Vertical Display Scale switch using
the command VDSH, The x-axis is set to -1 at the beginning and need only be
incremented up to the end of the loop. The following code allows the display
of the first 2K of data memory. Note in particular that since INCXD, TACYD
and INTENS share the same 1/0 device code 01, the three instructions can be
issued at once., The x-axis is incremented before intensification, so that it is
set to -1 at the beginning of the loop.

/SOFTWARE CONTROLLED DISPLAY PROGRAM

START,

LOOP,

PNTSET,
POINT,
CNTSET,
COUNT,

*g

MEMA PNTSET
ACCM POINT
MEMA CNTSET
ACCM COUNT
MONA

TACXD

MEMA @ POINT
VDSH

/SET DATA POINTER

/SET COUNTER TO 2048 POINTS
/SET X-AXIS TO -1

/GET FIRST DATA POINT

/SHIFT ACCORDING TO VERTICAL DISPLAY
/SCALE KNOB

TACYD INCXD INTENS /LOAD Y, INCREMENT X, & INTENSIFY

MPOM POINT

MMOMZ COUNT

JMP LOOP
JMP START
100000

g

4000

g

/INCREMENT POINTER

/DECREMENT COUNT, TEST FOR DONE
/DO NEXT POINT

/RESET POINTERS AND START AGAIN

a0 0000000 00GCQCQCAQCAAAGAAE AAAEUa:I

y

2. Digitizer Instructions

There are three instructions associated with the digitizer plug-in. These
reset the digitizer, start the digitizer and read it into the AC. Since all three
of these share the same device code they can be combined so that the digitizer

can be read, reset and started in one instruction.

Octal Code Mnemonic

4371 REDS Reset digitizer
4372 STDG Start digitizer
44374 RDG Read digitizer into AC

One analog to digital conversion takes 20 microseconds. It is therefore
necessary that there be a delay of at least 20 microseconds between the issuing,
the STDG command and the RDG command. Since one instruction takes 4 mic-
roseconds (and indirect addressing takes 6) this is not difficult to arrange. It
should be noted that the combination instruction RDG REDS STDG (octal code 44377)
reads the last conversion into the AC and starts a new one. The digitizer input is
signed: zero volts corresponds to @, + full scale to 377 (in the 9-bit position) and
full scale negative to 3777400. The AC is filled with ones from bit 19 if the input

is negative,

3. Sweep Ramp and Clock

There is a third digital to analog converter associated with the sweep
plug-in, called the Sweep Ramp. It is a 12 bit DAC which can be zeroed and
incremented only. During hardware data acquisition it is reset and incremented
synchronously with each sweep, The two instructions are

RSWP reset sweep ramp (to)
ASRMP advance (increment) sweep ramp

It is also possible to detect the dwell time clock flag under software con-
trol. In order to detect the clock, it must be enabled by a RSWP (reset sweep
ramp instruction). It will then be started either by setting the trigger switch to
auto-recur or by triggering the sweep from the trigger input pins. The instruc-
tion

DWSK skip on dwell
allows the programmer to test the dwell clock flag, This flag stays high for 20
microseconds, so the wait loop must be no longer than two instructions to insure
that the flag will be detected. Once the clock is started it runs continuously.

43

44

4. Software Control of Measure Mode

It is possible to have the stored program processor initiate the wired mea-
sure program using the command 4306. This I/O command is not defined in the
Assembler but can be defined in the program using the equals sign:

SETM = 4306 /SET MEASURE

A flag is set when this I/O command is executed so that when the STOP command
is given, the Measure mode will automatically commence. When the wired pro-
cessor has completed the number of sweeps set on the Autostop switch, the sweep
counter will be reset to zero and control returned to the stored program at the
location following the STOP, A typical program, then, is:

SETM=4306 v/DEFINE SYMBOL AS 10 COMMAND 4306

/PROGRAM TEXT

SETM /SET MEASURE

STOP /STOP WIRED PROCESSOR AND BEGIN MEASURE
/PROGRAM

MEMA TEMP /STORED PROGRAM CONTINUES HERE AFTER N
/SWEE PS

It is also possible to initiate the wired program and then halt, by giving the
I/0 command 4302, which simply initiates the measure program and then causes
the processor to stop when N sweeps have been completed.

This feature is standard on SD-82 plug-ins with serial numbers higher than
52, on all SD-81 plug-ins and all NIC-80's. Earlier models require a minor mod-
ification. Please contact the factory for details.

5. The STATUS Instruction

The instruction STATUS causes the contents of the status register to be read
into the AC, This register contains the information on which of the push-buttons
specifying readout and measure starting and size are depressed. Two things
should be observed about this register. It does not specify whether the 16K but-
tons are depressed. If none of the other size buttons are depressed, then it is to
be assumed that the 16K button is depressed. The user's program must trap for
this condition. Secondly, it should be noted that the Starting buttons register one
if they are in, while the size buttons register one if they are out. Asa result the
status word must be complemented before the Size buttons are interrogated.

[STATUS WORD_INTERPRETATION |

sis|s|E|2ls|2|z|8|2|R|x|8|&8|R|F|&|%|R|F
5 18 7 16 15 4 B3 R 1l 10 9 8 7 6 5 4 3 2 1 O
J /N J \ _J
Y Yo v
P33 %] 3z " X
%5 3 TR : % £
S

AHOW3N MIIA

A typical program for examining the readout Starting and Size push-
buttons and then displaying the result is shown below:

/SOFTWARE DISPLAY FROM PUSHBUTTONS

START,

DISPLA,

LOOP,

MASK,
DSTART,
POINT,
COUNT,
K16K,

STATUS

LASH 12
ANDA MASK
A+MA DSTART
ACCM POINT
STATUS

LLSH 6

ACPA

ANDA MASK
EXCT ZAC
MEMA K16K
ACCM COUNT
MONA

TACXD

MEMA @ POINT
VDSH

/READ STATUS WORD

/SHIFT OVER READOUT STARTING BITS
/MASK THEM OUT

/ADD ON 100000

/STORE ADDRESS OF FIRST DATA POINT

/SHIFT OVER SIZE BITS
/COMPLEMENT RESULT

/MASK THEM OUT

/IF @, SET TO 16K

/IF READOUT BITS = ff, DISPLAY 16K OF DATA

/SET X-DISPLAY REGISTER TO -1
/GET EACH DATA POINT
/SHIFT FROM VERTICAL DISPLAY KNOB

TACYD INCXD INTENS

MPOM POINT
MMOMZ COUNT
JMP LOOP

JMP START
36000

100000

g

g
40000

/INCREMENT POINTER
/DECREMENT POINTER

/DO MORE

/DONE, REREAD SWITCHES

/MASKS OUT ALL BUT BITS 10-13
/ADDRESS OF FIRST DATA MEMORY POINT
/DATA POINTER

/NUMBER OF POINTS TQ BE DISPLAYED

45

46

Exercises

(1)

(2)

3)

4)

)

(6)

(7)

Write a program to display 4K of data memory under software
control, The keyboard should be active during the display, echo-
ing all typed characters, When a Return is typed, the Teletype
should echo with a CRLF, and when a $ sign is typed, the pro-
gram should halt, Flow chart the program carefully.

Write a program to solve y = mx+b for m, x and b stored in
memory. Assume that y will only be single precision, Halt
with y in AC,

Write a program to solve y = ab/c for a, b and ¢ stored in mem-
ory. Halt with low order part of y in the AC.

Write a program to accept two positive decimal numbers from the
Teletype and add them. Use hardware multiply-divide instructions,

Write a program to display a horizontal line on the scope whose
position depends on the input to the digitizer.

Write a program to count the number of rotations of the Vertical
Display Scale switch from the highest position, and halt with the
number in the AC,

Explain how the instruction ZERZ is used below:

START, JMS READ
A-MZ (301
ZERZ
JMP A
A-MZ (302
ZERZ
JMP B
JMP START

(M N N N N N N NN NN NN RERENYENEENEEYEE X

b
b
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

GROUP I INSTRUCTIONS

Octal Mnemonic
0500000 A+M
0520000 AMP
0460000 A-M
0320000 M-A
0440000 ACM
0300000 CAM
0000009 AND
0100000 MEM
0120000 MPO
0700000 MMO
0040000 MCP
0060000 MNG
0400000 ACC
0420000 APO
0540000 AMO
0200000 ACP
0220000 ANG
0160000 ZER
0020000 ONE
0140000 MON
0740000 MTO
0000000 JMP
2000000 JMS

TABLE 1

Source (Operator) Destination (Suffix)

Add accumulator (AC) and memory 0010000 A Accumulator

Add accumulator, memory and 1 0004000 M Memory

Subtract memory from the accumulator 0002000 VA Zero test unit

Subtract the AC from memory Skip if result is 0

Accumulator plus the complement of memory

Complement of the AC plus memory

Logical AND between accumulator and memory

Take the contents of memory

Memory plus 1

Memory minus 1

Complement of memory

Negative of memory Addressing

Accumulator 0000000 = immediate

Accumulator plus 1 2000000 = direct
3000000 = indirect

Accumulator minus 1

Complement of the accumulator

Negative of the accumulator

Take the number zero*

Take the number 1

Take the number -1

Take the number -2*

Jump

Jump to a subroutine, leave PC in first address

*These instructions, if loaded into the AC, will change the state of the Link.

GROUP I INSTRUCTIONS

Shift Group
0005000

0005020
0005040
0005060

Skip Group

0005100

0005140

LASHn
RASH n
LLSHn
RLSH n

SKIP on

EXCT on

Miscellaneous Group

Left arithmetic shift of AC, Link unaffected

Right arithmetic shift 0<ng17g
Left logical shift

Right logical shift

0400020 ZAC Zero AC
0420000 MOAC Minus one AC
0540020 POAC Plus one AC
0000010 ACg AChitg=1
0000004 AC19 AChDhit19=1
0000001 L Link = 1

Processor halts

Clear the Link

Set the Link = 1

Transfer the Link to bit 19 of the AC, bits 0-18 and Link unchanged
Transfer bit 19 of the AC to the Link, bit 19 unchanged

Skip when the Teletype keyboard reader is ready

Read the Teletype keyboard-reader buffer into the AC

Skip when the Teletype printer is ready for a new character
Print the character contained in the AC

Skip if the high speed reader is ready

Read the next character from the high speed reader into the AC
Skip if the high speed punch is ready

Punch the contents of the AC

Shift AC by amount controlled by vertical display scale switch
Reset Data Scaler to start new digitization

Start digitization

Read Digitizer result into AC

Skip on Dwell Time flag

Advance Sweep Ramp

Reset Sweep Ramp

Read hardware settings into AC.

Multiply contents of MQ by next location
Divide AC-MQ by contents of next location
Transfer AC to MQ

Transfer MQ to AC

Zero AC and MQ

Bit invert the AC

Right integer shift of AC

Transfer AC to X display register (AC is complemented)
Transfer AC to Y display register
Increment register

0005220 STOP
0005210 CLL
0005204 STL
0005202 TLAC
0005201 TACL
Input-Output Instructions
0006454 TTYRF
0044453 RDTTY
0006444 TTYPF
0004443 PRTTY
0006464 HSRF
0044463 RHSR
0006474 HSPF
0004473 RHSP
Hardware Access Instructions
0105000 VDSH
0004371 REDS
0004372 STDG
0044374 RDG
0006362 DWSK
0004361 ASRMP
0004364 RSWP
0044034 STATUS
Automatic Arithmetic Instructions
0505320 MULT
0465300 DIVD
0004354 TACMQ
0004343 TMQAC
0044354 ZRAM
0004347 BITINV
0405000 RISH
Display Instructions
0214001 TACXD
4012 TACYD
4014 INCXD
4011 INTENS

Intensify display

48

1V. LOADING PROGRAMS INTO THE 1080

A, Pushbuttons

On the bottom of the section of the 1080 labeled ''290 Display Control'" there are
seven rectangular pushbuttons which stay in when pressed and two square buttons,
marked Execute and Stop, which do not, When one depresses one of the seven buttons
he indicates which function he wishes to perform, Pressing Execute actually causes

this function to be performed.

Directly above the pushbuttons are 20 toggle switches, called the Switch Regis-
ter. Twenty bit binary numbers can be represented in the Switch Register, where the
up position represents a one and down a zero. These switches can be used to specify
memory addresses and data to be deposited in memory. The use of these switches is
discussed in detail below, They are shown in the photograph on page 15.

LOAD PC -- Depressing this button, followed by pressing Execute causes the con-
tents of the Switch Register to be transferred to the Program Counter (or PC).
This value is also loaded into the AC at the same time, although this is of little
general use,

CONTINUE -- Pressing Execute when this button is depressed causes the Stored Pro-
gram processor to begin interpreting instructions at the address specified in the
Program Counter. Thus, using the combination LOAD PC, Execute, CONTINUE,
Execute, the processor can be started at any address.

START -- This button causes the processor to begin executing instructions at loca-
tion #. It is equivalent to loading the PC with g@@@#g@d and then pressing CON-
TINUE followed by Execute., One can also start programs at location zero using
the Stored Program Start pushbutton on the 1080 console.

SINGLE INS -- If the processor is running, depression of this button will cause it to
stop at the end of whatever instruction it is performing. Then, each time Exe-
cute is depressed the processor will execute one instruction. One can execute
single instructions from any arbitrary address by loading the PC with that ad-
dress, depressing SINGLE INS, and then pressing Execute once for each {nstruc-
tion to be executed.

EXAMINE -- The contents of the location whose address is in the PC are loaded into
the AC for examination, If a number of sequential locations are to be examined,
the red button STEP should be depressed. STEP causes the PC to be incremented
automatically, so that each time Execute is depressed the next sequential location
is displayed in the AC,

DEPOSIT -- The contents of the Switch Register are loaded into the memory address
specified in the PC. Thus, to deposit a number in memory, one sets the address
into the switch register and depresses LOAD PC followed by Execute and then

4

sets the desired number into the switch register and depresses DEPOSIT
followed by Execute. As before, if STEP is depressed, the PC will be incre-
mented automatically allowing the next sequential memory location to be mod-
ified by simply setting the next number into the switch register and pressing

Execute again,

B.

Loading Programs Using the Binary Loader

When a computer is first manufactured, it "knows' nothing. It does not even

know how to read in program tapes,

The reading in of program tapes, called '"loading, "

is accomplished using a fairly complex program called the Self-Checking Binary Loader.

This program occupies locations 7632 - 7777g, and once loaded should remain in mem-~

ory permanently, All 1080 computers contain this program when shipped from the
factory., The only conditions under which the Binary Loader must be reloaded are (a)
if an experimental program runs wild or (b) if a power failure occurs while the 1080

is running,

Since the Binary Loader is self-checking, one can always start the computer at
location 7777 and assume that if tape reads in, the loader is intact., If the computer
halts when started at 7777, this indicates that the loader has been destroyed and must
be reloaded using Nico-Loadeon, as described in the next section.

To load a program tape using the Binary Loader:

1)

(2)

@)

4)

()
(6)
(7)
(®)

Depress Wired Program STOP and Stored Program STOP to make sure
the computer is not running,

Place the program tape, printed side up, in the tape reader, If you have
a high speed reader, place the tape in the right-hand side and feed it
through to the left-hand side. If you have only a low speed reader, set
the reader switch to Free, place the tape in the reader, and turn the

switch to Start.

Be sure that the power to the reader is turned on. For the high speed
reader, this is an on-off switch on the front, For the low speed reader,
turn the Teletype power switch to the Line position.

Set the switch register to 77778 (00 000 000 111 111 111 111). In this
position, the right-hand twelve switches are up and the left eight switches
are down,

Depress LOAD PC,

Press Execute,

Depress CONTINUE,

Press Execute,

49

50

The program should start reading in the binary tape. The Self-Checking Binary
Loader automatically selects the correct tape reader, If the system contains a high
speed reader, and the reader has tape in it, the program will be read from the high
speed reader. If there is no high speed reader, or it contains no tape, the low speed
reader will be used. If the program does not start, and the STOP light comes on, the
Binary Loader has been destroyed and must be reloaded.

The Binary Loader program will halt under only two other conditions: (a) a
checksum error, or (b) a rubout in the trailer of the tape. If the tape suddenly stops
during read-in and the Teletype bell rings, a checksum error has been found, This
indicates a tape reading error and means that the tape must be restarted at the begin-
ning. Checksum errors are usually caused by torn or bent tape, tape loaded backwards,
or occasionally, Teletype failure. Be sure to investigate the first two causes carefully
before blaming the third. It is a good idea to duplicate all valuable tapes so that there

is always a back-up copy available,

The only legal halt for the binary loader is upon finding a rubout (all 8 holes
punched) in the trailer section of the tape. If the tape halts on a rubout while reading
in the leader you have probably placed it in the reader backwards. Be sure to check
the directional arrows printed on the tape before starting the Binary Loader. If the
Binary Loader halts on a rubout, it may be restarted to read additional tapes by
depressing Continue and pressing Execute,

Note that the Binary Loader is always started at 7777g. The starting address
printed on the tape label refers to the address at which the program is started once
loaded. It does not refer to the Binary Loader,

C. Reloading the Binary Loader Using Nico-Loadeon

One could, of course, toggle in the entire Binary Loader at the switch register.
However, this program is quite lengthy, occupying over 100 core locations, and this
would be extremely tedious. A more efficient method is to write a shorter program,
or "bootstrap" loader which then reads in the longer loading program. Nico-Loadeon
atilizes this method twice. One first toggles in fourteen instructions and then reads
in a two part tape through the low speed reader. The first part is read in using the
toggled instructions and the second part using the program contained in the first sec-
tion. When the second section is read in completely, the Self-Checking Binary Loader
is resident and is used to read in all other tapes.

The fourteen instructions comprising Nico-Loadeon have been carefully designed
to be entered with a minimum of switch register manipulation. Thus, in several cases
a number of switches stay the same between instructions, and in one case, an instruc-
tion is entered three times in succession.

The following instructions constitute the switch register portion of Nico-Loadeon.
The Assembler mnemonic equivalents are given on the right, but are not needed to
enter and use the program successfully,

y

Address Contents Assembler Equivalent

7736 7744 - READ, R2

7737 5007 LASH7 P e
S.A, = 7740 4453 -~ - - RDTTY . (¢ («i:,“r}_xt S

7741 6454 .-~ T1, TTYRF . ’

7742 1741 JMP T1

7743 1001736 JMP @ READ

7744 0171736 R2, ZERA

7745 2705751 MMOM R4

7746 2001736 JMS READ

7747 2001736 JMS READ

7750 2001736 R3, JMS READ

7751 2407777 - R4, ACCMZ 7777

7752 1744 - JMP R2

7753 1750 ~ JMP R3

To toggle in Nico-Loadeon, set the switch register to 7736 (00 000 000 111 111
011 110), depress LOAD PC and press Execute. The value 7736 will appear in the PC

and the AC.

Then depress Deposit and Step, toggle in the instructions one by one, and press

Execute to deposit each of them, Note that it is only necessary to load the first address

into the PC, since STEP automatically advances the location counter (PC) to the next
address each time Execute is pressed. Thus, the contents of locations 7746-7750 can
be entered by setting the switch register to 2001736 and pressing Execute three times

in succession,

When you have toggled in all 14 instructions, go back and check to see that they
have been entered correctly. This is accomplished by setting the switch register to
7736, depressing LOAD PC and pressing Execute. Then the locations are examined
by depressing Examine while STEP is depressed. The contents of a new memory
location are displayed in the AC each time Execute is pressed. Since the Step button
automatically increments the PC each time, the PC will always show an address one
ahead of that being displayed.

When you are sure that the instructions have been entered correctly, place the
Nico-Loadeon tape, printed side up, in the Teletype tape reader, The leader of this
tape is entirely blank: it contains no punches along the right-hand side. Be sure that
there is an inch or two of leader remaining before the first punched holes in the tape.
Turn the reader to START and then start the computer at location 7740, This is

accomplished by setting the switch register to 7740 (00 000 000 111 111 100 000),

depressing Load PC, pressing Execute, depressing Continue and pressing Execute.
(Be sure that you do not inadvertantly press Start instead.)

The program should start and read in the tape. If the tape motion halts at any
Go back, be sure that Nico-Loadeon is properly

time, it indicates a program error,

toggled in and start again,

F
i

51

N -4
REN S L
\\L;.‘-~Oc\‘:_\.~ s NG

52

Nico-Loadeon is self-modifying. This means that it will change as the tape
reads in, If you have to restart the program, you can expect that locations 7736,
7751, 7752, and 7753 will have changed. When the tape has read in about one third
of the way, the program will automatically change so that the section just read in is
now in control and it reads in the rest of the tape,

When the tape has read in beyond all data holes, and the program is reading
only trailer tape (containing holes along the right side only) the program may be
stopped by turning off the tape reader and pressing STOP on the computer console.
The Self-Checking Binary Loader is now loaded and can be started at 7777 to read
in tapes, as described on page 49,

D. Binary Tape Format

Both the Intermediate and the Self-Checking Binary Loader utilize the same
format of input tape. The only difference is that the longer loader uses the check-
sum information at the end of each section to check for read-in errors, The format
is described below.

(1) Leader - A row of column 7 (200g) punches is used as leader and
trailer. It must come before the first load information.

(2) Data Format - Each 20-bit computer word is broken into three lines
on paper tape, utilizing only columns 0-6. Column 7 is used to indi-
cate a checksum and trailer. The word is broken up as follows:

Line 1 bits 19 - 14 (in tape columns 5 - 0)
Line 2 bits 13 - 7
Line 3 bits 6 - 0

The loader assembles each word from the three lines and adds it into
a running sum, or ‘''checksum, "

(3) Load Address - The first 20-bit word following the leader, or follow-
ing each checksum, is the starting address for the data that follows.
The load address is included in the checksum.

(4) Data Words - Each 20-bit word following the load address is deposited
in memory in sequential locations starting at the load address and added
into the checksum,

" N E E E BN N N XN N N XN ¥ Y N N W Wy yY ¥

y

)

(6)

Checksum - At the end of each block of sequential data, the checksum
is punched, It is the lowest order 20 bits of the running sum kept of that
data block. It differs from actual load data only in that it has column 7
punched as well as columns 0 - 6, Following the checksum may be either

a new load address or trailer code.

Trailer Code - This is identical to leader tape, except that it may have
a Rubout punched in it, A rubout punched in pure trailer tape is a signal
for the Binary Loader to halt.

53

54

V. THE ASSEMBLER-EDITOR

A, Introduction

The Nicolet Assembler-Editor, 1973 (NIC-80/S-7304) is a program which
translates mnemonic codes into binary information ina form suitable for read-in by
the Binary Loader. It also produces a listing of each address, its octal contents
and corresponding octal code, and any comments.

In addition to these capabilities, this program is also a text editor. The ASCII

code representing the mnemonics is stored in data memory and can be altered and
corrected there,

B. Preparation of Source Tapes

There are two ways to prepare source programs for the Assembler, The first
method is to punch the tape out using the Teletype in the LOCAL mode, while the com-
puter is performing some other task, such as signal averaging or data reduction.
While the Teletype is in the LOCAL mode, the tape can be punched without affecting
any concurrent computer operation, If an error is made while typing, backspace the
tape as many times as there are illegal characters, and then type a RUBOUT for each
character to be delted. This procedure overpunches a rubout (octal 377) on each tape
line, When the tape is complete it can be read in by the Assembler. During read-in
mode, rubouts are ignored by the Assembler-Editor program.

The second method of preparing a source tape is using the Editor itself, In
the Insert mode, it is possible to create new programs by inserting at line 1 over a
previously created "empty' program. When the program is completed, exiting to
the Assembler will allow an immediate error analysis of the program.

C. Logic of the Assembler-Editor

The Assembler is a fairly simple program which examines each line of text
stored in memory and decides how to translate it to the octal equivalent, If the in-
struction is a Group II instruction, the translation procedure is to consider each
word separately. For instance if the instruction SKIP AC19 is encountered, the oc-
tal code for SKIP is found to be 5100 and the code for AC19 is found to be 0004, The
two values are ORed together and the result punched on paper tape or listed on the

Teletype.

If the instruction is found to be a Group I instruction, such as MEMA TEMP,
the code for MEM (0100000), the code for direct addressing (2000000), and the code
for suffix A (0010000) are combined to produce the code 2110000 for MEMA, Then
the text is scanned for a definition of the address TEMP, The Assembler must find

y

a line containing TEMP followed by a comma, As it is searching for this line, it keeps
track of the address of each line and when it finds TEMP it takes the right hand ten
bits of that address and ORs them with the calculated value for MEMA. If it found that
TEMP was defined at address 5365, for instance, it would combine 2110000 with 1365
to get 2111365 for MEMA TEMP. This value is then either punched out in binary form
or listed on the Teletype.

The Editor stores characters in the first 8K of data memory, three characters
per word, in horizontal order. Each ASCII character is converted to packed six bit
form by subtracting 240 from it. If the result is less than zero, the result is ignored.
If the result is greater than zero, the six bit result is saved and stored in a data word.
Characters are stored in bits 17-12, 11-6 and 5-8 of each successive word. A new
line is flagged by starting a new word and putting a 77 in bits 17-12, representing a
Return. The last character of any text must be a dollar sign. It cannot appear at any
other place in the listing, When the Assembler or Editor encounters a dollar sign,
it assumes that is the end of the text and proceeds no further,.

Since the code for a carriage return is 215 and therefore less than 240, the
Return is represented by the code 77. The back arrow character cannot be used in

these texts since 337 - 240 also = 77g.

D. Assembler Conventions

1. Special Characters

The following special characters are recognized by the Assembler:

/ Starts a comment, All characters beyond the slash except $ are ignored
by the Assembler until a carriage return is encountered.

$ Signifies the end of the program, Cannot appear elsewhere in a tag,
instruction or comment,

Designates a tagged address; the first six characters following the
previous Return and before the comma are taken as the name of the
tag. A tag need not be six characters, but any after six are ignored,

(Designates immediate address mode.

space Used to separate operators from operands. There must not be a space
between the operator and its suffix,

@ Designates an indirect instruction. An indirect immediate instruction
is flagged as an error,

55

* Designates the starting address of the code that follows.

= Allows the definition of symbols, For example, TTY2RF = 6434
defines the flag of a second Teletype, with I/O code 43,

The Assembler recognizes only printing characters as meaningful. All
non-printing characters are ignored,

2. Syntax
a. Spaces may be used freely to improve legibility. They are

not required anywhere except between a Group I instruction and its
operand. Their omission here will generate the error message IS

(Illegal Suffix).

b. A comment may contain any character except a dollar sign.

c. All non-printing characters are ignored on input and are not

d. Numbers can be entered only as positive octal integers.

e. Labels

i. Must be separated from the location contents by a
comma. No space is required following the comma, but is recom~
mended for legibility reasons,

ii, Must start with an alphabetic character but may con-
tain any combination of alphabetic and numeric characters after
the first.

iii. May contain up to six characters. Labels differing only

in characters beyond the sixth are treated as identical.

iv, May not contain embedded spaces.

E. Assembler Loading and Use

1. Loading

The Assembler-Editor tape (NIC-80/S-7034) is loaded using the standard
Binary Loader. The program is started at 2000 as follows:

a, Set the Switch Register to 2000 (00 000 000 010 000 000 000).

56

W
vV v v vVVV VVV V VUV V V VWD DVVYV VY VD

b. Depress LOAD PC and press Execute,
c. Depress Continue and press Execute.

The program will start by typing a carriage return line feed, and the

program name ASSEMBLER, It is then ready for commands.

R

2. Assembler Commands

Read in a source tape. If the source tape has been prepared off-line or
if a tape has been generated previously by the Editor, the command will
cause tape to be read in from the low speed reader unless there is tape
in the high speed reader. In this case the high speed reader is automat-
ically used. The tape does not echo during read-in, and all non-printing
characters, such as Rubout, are ignored. The tape must end with a dol-
lar sign in order to terminate the read-in routine.

Perform an error analysis. This command causes the Assembler to try

to assemble the entire text stored in memory without printing or punching
any output. If the text is fairly lengthy, the error analysis may take sev-
eral seconds. When the analysis is complete the program will type a dol-

lar sign.

If errors are detected, they fall into one of the following categories:

IS - Illegal Suffix
A suffix other than A, M or Z has been detected. The usual cause

is no space between operator and operand.

I - Illegal Immediate
The M suffix has been used in Immediate mode, or an indirect

immediate has been found.

NL - No Label
The label has not been defined.

DL - Duplicate Label
Two or more labels have been found that are identical in the first

six characters,

DU -Don't Understand
All other illegal syntax and untranslatable text. This includes

Group I instructions without any suffixes at all, as well as most
typographical errors.

Note that there is no trap tor direct addressing of constants on
another page or for logical errors that are executable but

meaningless.

57

58

SO - Symbol Table Overflow
More than 341 labels used.

NR - No Room
Text memory full.

B - Punch a binary tape of the stored text. The low speed punch should be
turned on before giving this command. Leader and trailer are automat-
ically punched as well. If a high speed punch is available, the command
HB will cause the output to be on the high speed punch. A longer leader
is automatically produced.

L - List the assembled code on the Teletype. The Assembler lists the ad-
dress, octal contents, mnemonic and comment for each line of text.
Lines which are not assembled, such as blank lines or those containing
only comments are also listed although, of course, without any octal in-
formation preceeding them,

S - List out the symbol table of the current program.,

H - This command, when prefixed to any of the Assembler commands, causes
the resulting output to be on the high speed punch instead of on the Tele-
type. The command HL, for instance, produces a listing on the high
speed punch,

CTRL/E - Enter the Editor. The command CTRL/E is produced by holding
down the CTRL key and typing E. This command causes the Assembler
to enter the Editor mode, pause while locating the end of the text, and
type out EDIT,

3. Editor Commands

The Editor is line-oriented. Each line of text can be accessed as a unit
having an octal number, If lines are inserted or deleted the number of each
line following the change will automatically be updated.

Lines can be printed for examination, inserted before a given line, or

deleted. In each case the line must be specified by number in one of two modes:

Octal or Absolute. The line numbering system is considered to be in one of
these modes at all times and changes only when specifically commanded.

If the command P (print) is issued, the Editor will type out the current
line numbering mode by following the P with an O or an A. If the user wishes
to change from one mode to the other he simply types A or O before entering
the line number he wishes to print. The complete command is therefore
PO nnnn, where nnnn is the line number in the Octal mode.

4

In the Octal mode, the line which will have address nnnn when assembled
is printed. In the Absolute mode, all lines are numbered, regardless of con-
tent, and the line which is nnnnth in the list is printed. Lines which do not
contain executable statements, such as blanks, comments, address definition

or symbol definition lines can therefore only be accessed in the Absolute mode.

A comparison between the two numbering systems is given below for a short

program.
Absolute Octal Text
1 /EXAMPLE PROGRAM
2 *109
3
4 100 START, MEMA TEMP
5 101 ACCM TEMP2
6 /NOW HALT THE PROCESSOR
7 102 STOP
1g $

The actual commands in the Editor program are

Pm nnnn Print line nnnn in mode m. If no number is specified, the last line
number entered is used, Folow the line number with a Return.

Dm nnnn Delete line nnnn in mode m. Follow with a Return.
Im nnnn Insert text before line nnnn. The program remains in the Insert
routine until the character CTRL/D is struck, Exit then occurs

automatically. A carriage return is inserted last only if one is
actually typed.

N Print the next line in sequence following the previous one printed,
This command does not increment the line counter.

CTRL/A Append more text to that already stored in memory.
w Write out the text stored in memory. If H was typed before enter-

ing the Editor, this will be done on the high speed punch. A leader
and trailer are automatically punched in either case,

CTRL/L Exit from the Editor to the Assembler,

The Editor remembers the last line number entered so that one need not
retype it while operating on the same line, Let us suppose that the line

MEMQ TEMP

has been typed by accident. It is absolute line 37 and the mode is currently

59

60

octal, The following series of commands prints this line, deletes it and
inserts a new one,

PO A37 print absolute line 37, changing the mode to absolute
MEMQ TEMP the line is printed on the Teletype

DA line 37 is deleted

1A a new line is inserted

MEMA TEMP

(CTRL/D) exit from the Insert routine

F. Special Features of the Assembler

The Assembler can be restarted at any time by pressing STOP and restarting
at location 2000.

Since neither Read nor Append echo at the keyboard, programs can best be
created from scratch by typing R, Return, Return, $ to zero previous text and create
a two-line blank program, One can then insert all the text needed by starting with
IA 1. The command IA § is not legal.

The Assembler recognizes the instruction
MEMA (LABEL
as an instruction to get the relative address of the labeled location. The operand
becomes the 10 least significant bits of the address LABEL. While this has limited

general use, it becomes extremely useful on page zero (locations 0-1777), where
the relative and absolute addresses are identical.

Control/E -

W -

N -

Control/A -

Control/L -

TABLE II

Nicolet Assembler Command Summary

SA = 2000

Read in Source Tape
Punch Binary Tape
Error Analysis

List Assembled Code

Causes output of B, L, W to be on HSP

Print out the Symbol Table

(WRU) Enter Editor

Editor

Write out the Source Tape

Print line
A - Absolute
O - Octal

Insert
EOT to Exit (Control/D)

Delete

Print next line

Append more text to buffer

from LSR if ADD is depressed

from HSR if SUBTRACT is depressed

(FORM) Exit to Assembler

61

62

EXAMPLES OF USE OF THE ASSEMBLER

ASSEMBLER
R

EDIT
10 Al

/EXAMPLE PROGRAM
*100

START, MEMA TEMP
ACCM TEMP2

/NOW HALT THE PROCESSOR
STOP

ASSEMBLER
E
INL AT 100

START, MEMA TEMP
INL AT 101

ACCM TEMP2$

EDIT
PA S

ACCM TEMP2

N
/NOWV HALT THE PROCESSOR
PA 7
STOP
1A 10

TEMP, O
TEMP2, @

ASSEMBLER

ES

Be'" C«D
Fw

L

/EXAMPLE PROGRAM

/EXAMPLE PROGRAM

Program is started at 2000
The sequence R, Return, Return, $ enters a two line

blank program
CTRL/E enters the Editor
Insert before Absolute line 1, mode changed from Octal

This text is entered

CTRL/D exits from the Insert routine

CTRL/L exits from the Editor
Error analysis performed

The labels TEMP and TEMP2 have not been defined

CTRL/E re-enters the Editor

Line 5, 6 and 7
are printed

Insert after line 7

The two constants are defined

CTRL/D to exit from Insert
CTRL/L to exit from the Editor

No errors found
B punches out a binary tape. The "garbage" is produced by
the Teletype attempting to type out binary characters.

The program is listed

Page cutting guide every 66 lines
Title printed at top of every page is the contents of the
first line of the program text,

MEMA TEMP Listing includes address, contents and

mnemonic codes,

*100

100 21108183 START,

101 2404104 ACCM TEMP2
/NOW HALT THE PROCESSOR

192 5220 STOP

103 @ TEMP, ©

104 ® TEMP2,

VI. DEBUGGING PROGRAMS

A, Introduction

Thus far we have concerned ourselves with the preparation of programs by
logical design, flowcharting, coding and assembly. The major part of any program-
ming effort, however, occurs after all these steps have been completed. This step
is, of course, debugging. Once the programmer overcomes the feeling that a pro-
gram which does not run the first time indicates a failure, he can program most
efficiently. Virtually no program runs correctly when it is first written, and the
more complex the logic, the greater the number of bugs that can creep in during the
process. The programmer should recognize that he is less than half done when the

program is coded, and plan accordingly.

B. OQutline of a Well-Written Program

While it is impossible to write down a set of rules which cover all potential
errors, it is possible to outline some general rules which cover most programming

situations.
1. Initialization

Improper initialization of pointers, counters, constants and I/0 facilities

probably accounts for 80 to 90% of all program failures. To appreciate the mag-

nitude of the problem, consider the following two programs for adding together
ten numbers stored in locations 200-211:

START, A+MA @ POINT START, MEMA PNTSET
MPOM POINT ACCM POINT
MMOMZ COUNT MEMA (12
JMP START ACCM COUNT
STOP ZERA
POINT, 200 LOOP, A+MA @ POINT
COUNT, 12 MPOM POINT
MMOMZ COUNT
JMP LOOP
STOP
PNTSET, 200
POINT, 0
COUNT, 0

While the two programs are designed to do the same job, the left hand
program makes several unwarranted assumptions, The worst of these is
assuming that the AC is zero when the program starts. The AC must be spec-
ifically set to zero for this to be true. However, even assuming that the AC is

63

64

zeroed before the program is started at START, the left-hand program will
only run once correctly. After the first time, the pointer POINT will contain
212 and the counter COUNT will contain #. These values are not reset by re-
starting the program, so that the second time it is run, numbers will be sum-
med starting at location 212 and will continue until the location COUNT again
reaches zero. Location COUNT will only be zero after one has been subtracted
1,048,576 times! This sort of error can therefore cause seemingly endless
looping of a program,

Initialization of the Teletype flags is also necessary to ensure bug-free
operation. As was mentioned earlier, the keyboard-reader buffer contains an
indeterminate character when power is first applied to the Teletype and the flag
may be in either state, One of the first commands should therefore be a RDTTY
which will read contents of the reader buffer into the AC (where it should be ig-
nored) and clear the flag.

The printer should also be initialized. The flag will be in the one state
whenever the printer is not printing, but the position of the carriage will be un-
known to the program. Each program should therefore also begin with the typing
of a carriage return-line feed combination.

If the above criteria are satisfied, the program should be ''serially reus-
able, "

2. Routines Versus Subroutines

As a general rule, any section of code that is used more than onze should
be coded as a subroutine. This simply minimizes the number of memory loca-
tions required, It is also often desirable to write routines in subroutine form
even if they are used only once, if writing them in this manner simplifies their
division into a logical unit., This division is particularly useful when debugging
or rewriting a program, since such routines can be tested and moved separately,

3. Program Gullibility

One of the principle errors encountered in writing programs is that of
program gullibility, This term simply implies that a particular program ex-
pects only certain kinds of data and therefore mistreats data which does not fall
within that classification. For instance, a routine to accept decimal numbers
from the Teletype might just subtract 260g from the typed character and store
it as a number, without first testing to see whether the character typed lay be-
tween 260 and 271. Thus, if a typographical error were made and a Q (321)
were typed instead of a one, the program would subtract 260 from 321 and
arrive at a result not equal to any possible decimal digit. All routines should
allow any possible form of input. They should check for range, sign and zero.

" E E E E N BN XN E N ¥ ¥ ¥ E N Yy ersEry w

Gullibility is not limited to input routines, of course. Any routine which
assumes that a number transferred to it has some abnormal constraint such as
sign or size is prone to disaster unless all of these factors are independently

trapped and checked.

4, Zero Effects

It is very easy to overlook the zero case in designing a piece of logic.
While zero is very often a legal input value to a routine--such as perform the
following loop zero times--it is likely that the programmer will forget to test
for the zero case independently. This usually causes extremely long execution

times or looping.

5. End Effects

The problem of end effects is closely related to both the zero case and
general gullibility, but warrants a few special comments. It is important to
remember that both the first and last points of a list may require special con-
sideration, both because of storage allocation and counter-pointer resetting
problems. In general, it is good practice to set all counters and pointers before
entering a loop so that if some condition interrupts execution of the loop, starting
the loop over again still assures that the entire list will be processed.

6. Conditional Branching

It is very important that every time a program makes a decision based on
conditions such as zero-non zero, plus-minus, odd-even, or the state of the
link, that the programmer carefully check and recheck the conditions under
which the branching will occur. Does the program skip on the correct condition?
It is very easy, for instance, to write down SKIP AC19 when careful considera-

tion will show that EXCT AC19 is correct.

7. Comments

Of all the features of a well-written program none is more important than
extensive comments, including whole paragraphs of explanation where appropri-
ate. It is easy to brush these off by saying they "are too hard to type" or "take
too long to list," but the time spent entering comments is always far less than
the amount of time needed to track down a bug in an uncommented program,

There must be enough comments to help the programmer when he is writing
and revising a program, and enough so that if the need for revision occurs sev-
eral months later, it will be easy to find out how a particular section of code

operates.
65

66

Third, there must be sufficient commenting in a program that any other
person can understand its flow. This is especially important if programs are
shared between researchers at different locations.

8. Human Engineering

Finally, no program is of much value if is difficult or confusing to use.
The ideal program should operate in such an obvious way that any researcher
in that discipline can operate it virtually without instruction. This means that
it should type out messages of explanation, that commands and constants should
have names associated with their function, and that it should be easy to start,
restart and modify while running. The attitude that only the original program-
mer will ever need to use a given piece of software has caused hundreds of thou-
sands of man hours to be wasted when a second person must discover or redis-
cover the operating procedure for a program,

C. Use of Nicobug II

1. Manual Debugging

Regardless of the care which is exercised, however, most programs will
exhibit one or more mysterious bugs which will require testing of the program
in some way. It is necessary that a case be prepared for which the exact ans-
wers are known, either from another program or from hand calculation. Then
the program must be stepped through, a few instructions at a time, and the
results observed.

One method of doing this is using the switch register, The Single Step
button allows the execution of one instruction each time the Execute button is
depressed. The program can then be started and stepped an instruction at a
time. The results can be observed by watching the AC, PC and IR lights.

This method has the obvious disadvantage that if the program is at all
lengthy the single stepping procedure becomes quite tedious. However, it is
possible to decrease this tedium by inserting a STOP instruction near the pro-
gram section where errors are suspected and allowing the program to run
freely up to this point, The computer will halt at the STOP instruction and can
then be single stepped from there. Unfortunately, very few programs have
space available for STOPs without the replacement of existing instructions.
This means that it would be necessary to remember the actual contents of the
location where a STOP is inserted and then restore them before continuing. A
much more efficient method of debugging is utilizing Nicobug II, a program
designed to simulate the above procedure under software control,

y

2. Loading and Storage of Nicobug II

Nicobug II is loaded using the standard Binary Loader. It occupies
locations 4632-5365, but starts at 4700, The storage layout for the first 4K
during debugging might look like this:

0-1777
2000 - 4601
4632 - 5365
5366 - 6000
6000 - 7577
7600 - 7625
7632 - 7777

free for user programs
Assembler - Editor

Nicobug II

free

Floating Point routines, if used
Swap

Binary Loader

However, if more than one page is needed for debugging, Nicobug II can be
SWAPped to the third 4K, addresses 114632 - 115365 by running SWAP, It is
then started at 114700, Nicobug II automatically relocates itself and will oper-
ate correctly at this address. Swap is referred to in the support software sec-
tion of the 1080 manual, and is simply a program to interchange the contents of
location 0 - 7577 with those of 110000 - 117577 (the second data stack). Running

it twice in succession restores the original contents of each stack. Neither Swap

nor the loaders are moved and only Nicobug II will operate correctly in both lo-

cations. Swap is started at location 7600 and takes about 0. 2 seconds to perform

the interchange.

3. Nicobug II Commands

The following commands are used by Nicobug II, where nnnn is used to
symbolize any 20-bit octal number or address:

Command
nnnn/

/

(line feed)

nnnnG

Meanin
Print out the contents of address nnnn and allow modification

Print out the contents of the last address examined and allow
modification,

Close any location currently being examined and print out the
contents of the next sequential address for modification,

Load the saved AC into the AC and begin executing instructions
at location nnnn,

Begin executing instructions at location #.

67

nnnnS Load the saved AC into the AC and execute a subroutine begin-
ning at location nnnn, When finished return to Nicobug.

nnnnB Insert a breakpoint at location nnnn so that execution of this
instruction will cause a jump back to Nicobug where the Link
and AC will be saved, Address nnnl777 is used as a pointer

address.

B Remove the current breakpoint and restore the contents of
address nnnl777. (A breakpoint at location zero is not per-
mitted.)

C Restore the saved AC and Link and continue from the break-

point location,

nnnnC Continue from the breakpoint and allow the program to loop
through the breakpoint nnnn times before returning to Nicobug.

A Print out the contents of the saved AC for modification.

F Print out current lower limit location '"From' and allow
modification. Close with a carriage return.

T Print out current upper limit location ""To'" and allow
modification. Close with a carriage return.

M Print out current data Mask and allow modification,

nnnnD Dump (print) all memory locations lying between From and To
which are equal to nnnn after having been ANDed with the data
Mask,

4, Opening and Modifying Locations

Nicobug II is first of all a program for examining and changing memory
locations in an extremely simple fashion. Any memory location, including those
in Nicobug itself can be examined by simply typing nnnn/, If, after examining
a memory location, you wish to change it, simply type the new value immediately
after the old value and close with a Return, If you also wish to examine and alter
location nnnn+1, type a Line Feed instead of a Return and the new contents will
be deposited and the next location opened. Only a Return or a Line Feed are
legal terminators; any other character will be regarded as an error, which will
not modify that memory location., If the termination character is one of the legal
commands, that command will be executed instead.

y

5. Breakpoints

The most useful feature of Nicobug II is the breakpoint, By typing nnnnB,
one replaces instruction nnnn temporarily with a jump instruction which returns
control to Nicobug II, Since the instruction may well be on another page, this
jump is always an indirect one through location 1777 of the current page, For
this reason, location 1777 cannot be referred to by a program while a breakpoint
is in effect. Once the breakpoint is removed, both the instruction and location
1777 are restored., This obviously affects the Binary Loader if debugging is car-
ried out on page 6000, since it starts at 7777.

When a breakpoint is in effect, each time the program passes through that
point, the program jumps back to Nicobug, where the contents of the AC and link
at that point in the program are typed out in the format

0001234 1;2134542

where 0001234 is the address of the breakpoint, 1 is the contents of the link and
2134542 is the contents of the AC.

Any of the Nicobug commands are then available. Memory locations can
be examined and changed, allowing one to modify instructions directly in octal.
The saved AC and the breakpoint itself can also be changed at this time, The
location of the breakpoint can be changed to further along in the program, or the
breakpoint removed altogether. When all possible information has been obtained,
the C command will tell Nicobug to restore the saved AC and link and continue

from the last breakpoint.

The breakpoint will remain in force and if a program loop returns to that
breakpoint, control will again be transferred to Nicobug. If it is desirable to
examine the program only after a number of loops through the breakpoint, the
command nnnnC will allow nnnn passes before control is transferred back to

Nicobug.

6. Masks and Dumps

The command nnnnD causes a dump of all memory locations between From
and To which are equal to nnnn after being ANDed with the Mask. This feature
can be used as a straightforward memory dump, or as a sophisticated searching
technique to find locations having particular values or even particular bits in

common,

To illustrate this, let us first consider the simplest case, where the Mask
is §. If F is set to 7600 and T to 7605, then the command D will cause a dump
of all locations between 7600 and 7605, If, now, we change the Mask to 3777777,
the command 1605D will cause a listing of only those locations between 7600 and

7605 having the value 1605,

69

70

PR X R

7. Examples of the Use of Nicobug

Dump and Breakpoint examples are given for the Swap program listed
below:

/SWAPS 0-7577 WITH 110000-117577

/SWAPS 0-7577 WITH 110000-117577

*7600
7600
7601
7602
7€03
7604
7605
7606
7627
7610
7611
7612
7613
7614
7615
7616
7617
7620
7621
7622
7623
7624
7625

2165620
2111621
24p5622
2111623
2405624
3111622
24095625
3111620
3485622
2111625
34025620
2125622
2125620
2707624
1685
5226

4]
110000
%)

7600

0

]

START, ZERM PRGPNT /SET PROGRAM STACK POINTER
MEMA DSTART
ACCM DPNT /SET DATA STACK POINTER

MEMA CNTSET

ACCM COUNT
LOOP, MEMA e DPNT

/SET COUNTER TO 7608 WORDS
/GET PROGFEAM AREA WORD

ACCM TEMP

MEMA @ PRGPNT
ACCM e DFNT

/GET PROGRAM AREA WORD
/PLACE IN DATA STACK

MEMA TEMP /GET DATA STACK WORD
ACCM @ PRGPNT /AND PLACE IN PROGRAM STACK
MFOM DPNT /ADVANCE POINTER

MPOM PEGPNT

MMOMZ

COUNT /DECREMENT COUNTER

JMP LOOP

STOP
PRGPNT,
DSTART,
DPNT, O
CNTSET,
COUNT, @
TEMP, ©

/STOP AFTER 762¢ WORDS DONE

0
110000

7600

FooAe00a 7600
Toee0R0R 7605
M3777777 ©

D
POPT7600/2165620
P007601/72111621
POR7602/2405622
P00760372111623
PO T6@4/2425624
P0P7605/73111622
Moeoeeed 3777777
TAPBT768S5S 7625
1685D
2R7616/700016085

M3777777 2001777
2091620D
P0076008/2165620
2607687/3111620
20076127340 5620
PRA7614/72125620

7603B
7600G

00R7623 930110000

7605SB
C

007625 ;0007600

7612B
15C

007612 030162000

762070000014
P007621/0110000
0007622/70110014
2007623/70807600
00076247 0007564
0007625/0162000
B

From set to 7600

To set to 7605

Mask set to zero)

Dump of all locations between 7600 and 7605

Mask set to all ones
To changed to 7625
List of all locations equal to 1605

Mask changed to search for memory reference instructions

Dump of all locations referring to 7620

Breakpoint set to 7603
Program started at 7600

Breakpoint occurs when program reaches 7603
Breakpoint moved to 7605

Program continues from 7603

Breakpoint occurs at 7605, AC = 7600

Breakpoint moved to 7612

Continue through new breakpoint 15 times (octal)
Breakpoint occurs after 15 loops

Location 7620 examined

Successive locations examined by typing Line Feeds

Breakpoint removed

71

o

Exercises

(1) If, at the end of the Nicobug II example in the preceding section, the
breakpoint is not removed, and the command 5000C is given, the pro-
gram seems to run wild. Explain why.

(2) Assemble, run and debug your answers to several of the previous
exercises.

(3) Explain why this program shows poor programming practices:

START, MEMA @ POINT
A+MM SUM
JMS DUMMY /ASSUME THIS ROUTINE IS REAL AND WORKS
MPOM POINT
MMOMZ COUNT
JMP START
MEMA PNTSET
ACCM POINT
MEMA (15
ACCM COUNT
JMP START
POINT, 5000
PNTSET, 5000
COUNT, 15

(4) Write a program to display a box on the oscilloscope.

(5) Write a program to sample the digitizer each time a Teletype key is
struck and display the level of the input signal as a horizontal line
until another key is struck,

vvv‘vvvvvvvvv-vv-v""-

E. NMR-80, LAB-80 and BNC-12 Commands

The following commands are unique to the NMR-80, LAB-80 and BNC-12 sys-
tems and are, except for the SETM, PULSE, SENSE and PEN LIFT commands, not

available on the 1080,

4002 PENLFT

4301 SETKNB

4372 STDG

44374 RDG

4031 RSCNTR

4032 ASCNTR

4311 LDWELL

4312 LDELAY

4302 SETM

4304 LCWORD

6314 OVSK

4102 PULSE1

4104 PULSE2

6112 SENSE1L

6114 SENSE2

Loads the Pen enable register with AC bits 0 and 1.
Bit 0 controls pen up and down (0 = up, 1 = down)
Bit 1 controls plotter output enable (0 = grounded, 1 = enabled)

Causes digitizer to read parameter knobs A or B.
Bit AC# controls the choice. 0=B, 1= A,

Start digitizer. Starts digitizer running to read either knob.

Read Digitizer. Load result into AC. Ten usec must elapse
between STDG and RDG.

Reset Sweep counter to zero,

Increment sweep counter

Load dwell time register from AC, Sets time as integer in micro-
seconds. The minimum dwell time is 0000012, or 10 microseconds,
The maximum is 3777777, treated as a positive integer, or 1. 048575
seconds per point,

Load Delay register from AC. Zero is a legal delay. The maximum
is the same as LDWELL,

Set Measure flip-flop. Next Stop after SETM causes Measure mode to

start. Only one sweep is taken and machine returns to software control,

Load control word from AC. Bits of control word are defined below.

Skip on Measure memory overflow. Before entering Measure, the

OVSK command will clear the overflow flag. The result of skipping
or non-skipping should be ignored. Following a Measure sweep or

group of sweeps, OVSK will indicate whether, during addition, any

memory location became greater than 15/16 full.

Pulse out rear panel BNC jack, marked PULSE1L or J6, 400 nsec long.

Pulse out rear panel BNC connector marked PULSE 2 or J5, 400 nsec
long.

Skip if input to connector marked SENSE1 or J8 is high

Skip if input to connector marked SENSE2 or J7 is high.

73

74

CONTROL WORD BIT ASSIGNMENTS

Bit # Function Name Bit=1 Bit=4¢

[Measure Add Add data Subtract data

1 Address Advance Internal External

2 Trigger Positive Slope Negative Slope

3 Recur Auto Recur Triggered Sweep

4 View View Memory View Input Signal

5 Continuous (overrides bit 4) Continuous Display Bit 4 in control

6 Not used

7 Readout Light On Off

8 Compute Light On Off

9 Enable Clock for DWSK On Off
10 Digitizer Resolution) 00 = 12 bit 10 = 8 bit Active only when front
11 Digitizer Resolution) 01 = 10 bit 11 = 6 bit panel switch is set to

Computer Control
12 Dual Input Dual Single
13 View Input A View A If both bits 13 & 14 are high,
14 View Input B View B both inputs will be shown
overlapped
15 Transient Recorder Transient Recorder Normal
bits 3 & 5 must be @

16 Homodecoupling Mode Starts dwell signal Normal

running. Trigger only at
dwell times (must be
in Auto Recur mode)

APPENDIX I. ASCII Character Codes

The following list contains the 8-bit octal codes produced by standard ASR-33
Teletypes. This code is known as ASCII (American Standard Code for Information
Interchange). The packed 6-bit code on the right is that used by the Assembler when

storing text.

Several things should be noted about this code:

)
(b)
()
(d)

(€)

The integers are biased by 260.

The alphabet starts at 301.

Most non-printing characters are less than 240,

The CTRL key removes bit 6 from whatever key is typed:
E = 305, CTRL/E = 205,

The Shift key adds bit 4 to whatever key is typed:

N = 316, SHIFT/N= = 336.

Leader-Trailer (200) tape can be generated by holding down
SHIFT, CTRL, REPT and P. Release in opposite order.
The characters [and] are generated by SHIFT/K and
SHIFT/M respectively.

ASCII CHARACTER CODES

Character Code Packed 6 Bit Character Code Packed 6 Bit
A 301 41 ! 241 01
B 302 42 " 242 02
C 303 43 # 243 03
D 304 44 $ 244 04
E 305 45 % 245 05
F 306 46 & 246 06
G 307 47 ' 247 07
H 310 50 (250 10
I 311 51) 251 11
J 312 52 * 252 12
K 313 53 + 253 13
L 314 54 s 254 14
M 315 55 - 255 15
N 316 56 . 256 16
o] 317 57 / 257 17
P 320 60 : 272 32
Q 321 61 ; 273 33
R 322 62 < 274 34
S 323 63 = 275 35
T 324 64 > 276 36
U 325 65 ? 277 37
\% 326 66 @ 300 40
w 327 67 [333 73
X 330 70 \ 334 74
Y 331 71] 335 75
Z 332 72 i 336 76
0 260 20 — 337 -
1 261 21 EOT 204 -
2 262 22 WRU 205 -
3 263 23 RU 206 -
4 264 24 BELL 207 -
5 265 25 TAB 211 --
6 266 26 Line Feed 212 -
7 267 27 FORM 214 -
8 270 30 Return 215 -
9 271 31 Space 240 00

ALT MODE 375 -
Rub Out 377 -

76

APPENDIX I

BIT ASSIGNMENTS

1. GROUP I INSTRUCTIONS

Group I instructions are actually combinations of five extremely simple machine
instructions indicated in bits 13-17. These instructions are:

Bit Operation

17 LAC Load the AC into the arithmetic unit

16 LCAC Load the complement of the AC into the arithmetic unit

15 LM Load the memory location specified by the addressing mode
and bits 0-9 into the arithmetic unit

14 LCM Load the complement of memory into the arithmetic unit

13 CIN Increment the arithmetic unit contents

Those five source instructions are combined with the three destination instruc-
tions (suffixes):

12 TDAC Transfer data to AC (A)
11 TDM Transfer data to memory (M)

10 SZD Skip on zero data (Z)
GROUP 1
SOURCE ADDRESS
— A — A M Z I A— A}
MREF | IND | LAC [LcAC| LM | LcM | cIn |TDAC] TOM | s2D
P 18 I7 6 15 4 B R I I0 9 8 7 6 5 4 3 2 | O
DESTINATION
(SUFFIX)

The instruction MEMA can thus be decomposed to LM and TDAC, or load mem-
ory into the arithmetic unit and transfer this data from the arithmetic unit to the AC.
If several of the load instructions are combined, they are summed in the arithmetic
unit. Thus A+MA is performed by LAC and LM, which causes the summation of the
AC and memory, followed by TDAC which places this sum in the AC.

Similarly MPOMZ is decomposed into LM and CIN and TDM and SZD, which
means load memory and increment it and then transfer the result back to memory
and into the zero test register.

Subtraction of one from a number is accomplished by adding the number to -1
in the arithmetic unit. The minus one is created by loading a value and its comple-
ment, which produces 3777777, or -1, For instance MMOA is accomplished by LM +
LAC + LCAC + TDAC and AMOZ into LAC + LM + LCM + SZD. Note that the actual

o 6 & & & A & 2 A A A A A A A & O & o a

contents of the register used to create the -1 are irrelevant since any number and
its complement sum to become -1,

Negative numbers, you will recall, are formed by taking the one's complement
and adding one. This is exemplified by ANGA (negative of AC to AC), which is de-
composed into LCAC + CIN + TDAC. Similarly A-MM i¢ broken into LAC + LCM +

CIN + TDM.

The constant ONEA is constructed by CIN + TDAC and the constant ZERM by
LM + LCM + CIN + TDM where LM and LCM create a -1 and CIN increments it to
zero. Here it can be realized that ZERA (LM + LCM + CIN + TDAC) would also
complement the link since the creation of the zero causes an arithmetic overflow.

II. TEST INSTRUCTIONS

The bits 13-17 are also active during test instructions, They are used to create
some extra test conditions, The five basic test conditions are:

Bit Condition

4 ZDB Zero data bus. The data bus is the output of the arithmetic
unit,

3 AC#H AC bit g

2 AC19 AC bit 19

1 COouT Carry out of arithmetic unit

/] L Link '

These can be combined with bits 13-17 to produce the ZAC, MOAC and POAC
test conditions. For instance to test the AC for +1 (POAC) we load the AC, add -1 to
it and test for zero. This is accomplished by LAC + LM + LCM and either SKIP or
EXCT on ZDB. Conversely the test for MOAC is accomplished by LAC + CIN + test

for ZDB.

The COUT instruction has been found to be of limited use since whenever an
arithmetic overflow occurs, the condition ZDB is probably also satisfied. The arith-
metic carry out must be from the same instruction and not from a previous one, so
that only the AC is generally known,

It is clearly also possible to combine the elementary test instructions. Thus
SKIP AC19 L will produce a skip if AC19 = 1 or if the link = 1. Similarly SKIP AC19
ZAC will produce a skip if the AC is negative or zero,

Note in particular that combinations of ZAC and POAC or ZAC and MOAC will
not produce the desired result since the actual skip is generated by the ZDB bit in
either case. It is permissible to make the following combinations, however:

(i

78

ZAC AC19 L ACg All possible combinations
MOAC AC19 ACY L All possible combinations
POAC AC19 ACg L All possible combinations

However the combinations
ZAC POAC
ZAC MOAC

are forbidden.

Further, it is not possible to combine EXCT and SKIP in a single instruction,
since this implies that bit 5, the REVerse sensing bit is both on and off,

The bit assignments for these functions are shown below:

[TEST AND MISC INSTRUCTIONS |

"._° sToP| cL | sTL |TLAC [TAcL

0 LAC [LCAC| LM | LCM | CIN I I | o |msc|TeST| REV | 7pa | ace |acis |cout|L
o |
o 18 I7 16 5 14 13 1 H IO98765\4 3 2 1 0
Y

TOP ROW IF MISC = |
BOTTOM ROW IF TEST=|

skiP IF REYO,

1. DISPLAY INSTRUCTIONS EXCT IF ?rez\s,;il

The shift instructions take the number of shifts to be performed from bits §-3
unless bit 15 is set, If bit 15 is set the number of shifts is taken from the Vertical
Display Scale switch, If the switch is set at 131K, no shifts are performed and if it
is set at 4, 151 shifts are performed. Any of the five types of shifts can be per-
formed in this way, although the most useful one is the LASH, which has been given
the special Assembler mnemonic VDSH. The octal codes for all of the shifts are:

From Bits 0-3 From Vertical Display Scale
5000 LASH 105000 (VDSH)
5020 RASH 105020
5040 LLSH 105040
5060 RLSH 105060

405020 RISH 505020

The TACXD instruction, 214001, is composed of LCAC + TDAC + 4001 so
that the AC is complemented automatically before its transfer to the X-display
register. This is because the X-display register requires the complemented
value; but note that the original value in the AC is replaced by its complement
after the instruction is executed.

The X-display can be initialized with 0 in a single instruction by using a
combination of bits which produces a -1 (the complement of 0), such as 614001
which is LAC + LCAC + TDAC + 4001, Similarly, the X-display can be set to
-1 by generating a 0 in the accumulator using bit 14 to clear the AC, resulting
in the instruction 44001, The latter initialization is useful in display loops which

use the INCXD instruction,

Finally, the Horizontal Display Scale switch is active during software control
if the X-axis is advanced using the INCXD instruction, Thus 1024 INCXD's cause
a full scale display if the switch is set to 1K Horizontal Display, 2048 are full
scale at 2K and so forth, This switch does not influence the display if the X~ axis
is loaded with numbers using TACXD,

79

APPENDIX III

MODIFYING THE ASSEMBLER-EDITOR 1973

NIC 16-30417

The following modifications may be desirable for certain advanced users and
can be easily accomplished from the switch register or by using Nicobug.

1. Changing the size of data storage. The locations SIZE and LLIMIT
define the storage area for text as two 4096 word data stacks starting
at address 100000, These locations are located as follows:

Address Contents

LLIMIT, 2342 100000 /STARTING ADDRESS
SIZE, 2343 20000 /ONE MEMORY STACK

2. Changing the Append Command to echo at the Teletype. This can be
used to generate error free source tapes or as an alternative method
to Insert for adding new code.

Change location 3677 from 2024403 ONEM SUPSWT
to 2164403 ZERM SUPSWT

3. Changing the High Speed Reader-Punch I/O device codes. High speed
equipment installed by users may utilize different 1/O codes than those
used by NIC. These are located as follows:

4565 44463 RHSR
4566 6464 HSRF
4522 6474 HSPF
4523 4473 PHSP

0 N

16

32

64

128

256

512

1024

2048

4 096

8 192

16 384

32 768

65 536

131 072

262 144

524 288

1 048 576

2 097 152

4 194 304

8 388 608

16 777 216

33 554 432

67 108 864

134 217 728

268 435 456

536 870 912
1073 741 824

2 147 483 648

4 294 967 296

8 589 934 592
17 179 869 184
34 359 738 368
68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888
1 099 511 627 776

00O ~1I O BB WND RO B

B0 00 WL oW LN NNDNIDNDDNDDNDNDN
e e
ocooo<lcbr.nu:-oowv—*ocooo-qoacnphoomt—lotoooﬂ;;zgs:zm

APPENDIX IV

POWERS OF TWO

5

25

62 5

0.031 25

0.015 625

0.007 812 5

0.003 906 25

0.001 953 125

0.000 976 562 5

0.000 488 281 25

0.000 244 140 625

0.000 122 070 312 5

0.000 061 035 156 25

0.000 030 517 578 125

0.000 015 258 789 062 5

0.000 007 629 394 531 25

0. 000 003 814 697 265 625

0.000 001 907 348 632 812 5

0.000 000 953 674 316 406 25

0.000 000 476 837 158 203 125

0.000 000 238 418 579 101 562 5

0.000 000 119 209 289 550 781 25

0. 000 000 059 604 644 775 390 625

0.000 000 029 802 322 387 695 312 5

0.000 000 014 901 161 193 847 656 25

0.000 000 007 450 580 596 923 828 125

0.000 000 003 725 290 298 461 914 062 5

0.000 000 001 862 645 149 230 957 031 25

0.000 000 000 931 322 574 615 478 515 625

0,000 000 000 465 661 287 307 739 257 812 5

0.000 000 000 232 830 643 653 869 628 906 25

0.000 000 000 116 415 321 826 934 814 453 125
0.000 000 000 058 207 660 913 467 407 226 562 5
0.000 000 000 029 103 830 456 733 703 613 281 25
0.000 000 000 014 551 915 228 366 851 806 640 625
0.000 000 000 007 275 957 614 183 425 903 320 312 5
0.000 000 000 003 637 978 807 091 712 951 660 156 25
0.000 000 000 001 818 989 403 545 856 475 830 078 125
0.000 000 000 000 909 494 701 772 928 237 915 039 062 5

Q= N OO

.
.

81

82

APPENDIX V

DECIMAL-OCTAL CONVERSION TABLE (Modulo 40961)

[1 2 3 4 5 6 7 & 9 [1 2 3 4 s 6 7 8 °
000 e0Ce @001 @EC2 B8MO3 0634 @ACS 0AG6 ©COT EB1e 711 1200 1750 1751 1752 17583 1754 1755 1756 1757 1768 1761
o010 @12 0013 @nl4 GRS P16 @617 0928 enzl 8222 8323 1810 1762 1763 1764 1765 1766 1767 17780 1771 1772 1773
0020 0024 @025 e@@26 6P27 0A33 8031 Am32 G233 ACIs 6835 1020 1774 1775 1776 1777 2000 2001 2002 2003 2004 2005
2030 9036 @037 #M4A BR4l BR42 BR43 GR44 ABAS 0546 0R4T 1230 2006 2007 2018 2811 2012 2813 20814 2015 20816 2017
e040 o@S0 @esS1 0352 @053 B8RS4 AGSS AAS6 AZST AA6M AB61 1040 2020 2021 2022 2023 2024 2025 2026 2027 2038 2831
@050 Q@62 8863 BG4 Q065 0066 ON6T BBTO KAT1 9572 0A73 1250 2032 2033 2834 2835 2036 2037 2040 2041 2042 2043
o260 0074 @875 0876 €077 C1A0 6141 €182 813 6124 2105 106¢ 2044 2045 2046 2047 2050 2051 20852 2053 2054 2055
70 91e6 @187 el1le @111 @ll2 @113 @ell4a 2115 8116 £117 1870 2856 2057 2060 2861 2062 2063 20864 2065 2066 20867
o080 pl2e @121 @122 @123 @124 8125 8126 8127 0132 08131 1880 2070 2071 2872 20873 2874 2075 2076 20877 216e 21@l
eove 2132 @133 @134 @135 @136 @137 @l4g 014l pla2 @143 1090 2182 2103 2104 2185 2186 2107 2110 2111 2112 2113
2100 0144 @145 0146 @147 @156 0151 8152 8153 0154 #8155 1100 2114 2115 2116 2117 2128 2121 2122 2123 2124 2125
el10 D156 ©157 0162 ©161 @162 8163 @164 ©£165 08166 ©167 1118 2126 2127 2138 2131 2132 2133 2134 2135 2136 2137
o120 @17¢ @171 8172 0173 @174 @175 @176 @177 0826@8 0201 1120 2140 2141 2142 2143 2144 2145 2146 2147 2156 2151
e13e @202 0203 @204 ©205 0206 0227 0216 ©62i1 @212 @213 1138 2152 2153 2154 2155 2156 2157 2168 2161 2162 2163
2140 0214 @215 @216 (217 6220 022! 0222 @223 0224 9225 1140 2164 2165 2166 2167 2178 2171 2172 2173 2174 2175
2150 @226 @227 0238 @231 0232 £233 @234 ©235 0236 0237 1150 2176 2177 2208 2221 2282 2203 2204 2205 2206 2207
2160 0240 0241 @242 0243 0244 0245 0246 8247 06250 0251 1168 221@ 2211 2212 2213 2214 2215 2216 2217 2220 2221
o170 @252 @253 0254 @255 0256 0257 0262 €261 0262 0263 1170 2222 2023 2224 2225 2226 2227 223@ 2231 2232 2233
2180 0264 @265 0266 @267 0270 0271 8272 6273 0274 0275 1180 2234 2235 2236 2237 2248 2241 2242 2243 2244 2245
o192 276 @277 380 0301 0302 0303 0384 63IZS @366 0327 1199 2246 2247 2259 2251 2252 2253 2254 2255 2256 2257
@200 2318 @311 @312 @313 8314 0315 8216 €317 0320 0321 1200 2268 2261 2262 2263 2264 2265 2266 2267 2270 2271
@210 9322 0323 @324 @325 0326 0327 ©332 331 8332 A333 1210 2272 2273 2274 2275 2276 2277 2300 2381 2302 2303
ez20 2334 0335 336 0337 @348 0341 @342 343 0344 0345 1220 2304 2305 2306 2307 2318 2311 2312 2313 2314 2315
2230 8346 0347 @356 ©3S1 2352 8353 @354 0355 0356 8357 1230 2316 2317 2328 2321 2322 2323 2322 2325 2326 2327
240 83620 0361 @362 8363 0364 8365 8366 8267 378 8371 1248 233¢ 2331 2332 2333 2334 2335 2336 2337 234¢ 2341
e2se 0372 @373 ©374 @375 0376 0377 @40 940l C4B2 G463 1250 2342 2343 2344 2345 2346 2347 2350 2351 2352 2353
2260 4G4 Q4@S 8406 DB4BT G418 8411 ©412 BAId g4l4 @41S 1268 23s4 2355 2356 2357 2368 2361 2362 2363 2364 2365
2270 2416 @417 0428 B421 0422 0423 D4R G4RS B426 G427 1270 2366 2367 237@ 2371 2372 2373 2374 2375 2376 2377
0280 P438 0431 @432 8433 0434 @435 0436 @437 @44@ C441 1282 2400 2401 2482 2403 2484 2405 24086 2407 241@ 241l
8290 P442 @443 Q444 PA4S 0446 @447 BASB €451 @452 G453 1290 2412 2413 2414 2415 2416 2417 2428 2421 2422 2423
e300 PaS4 B4S5 Q456 0457 0460 Q461 Q462 0463 0464 €465 1300 2424 2425 2426 2427 2430 2431 2432 2433 2434 2435
@318 0466 0467 B470 0471 @472 0473 G4T4 4TS 0476 E4TT 1318 2436 2437 2440 2441 2442 2443 2444 24845 2846 2447
@3zce 0500 050! ©S562 8SP3 @SP4 BSES B8S06 €527 ©510 0511 1320 245@ 2451 2452 2453 2454 2455 2456 2457 2460 2461
233e @si2 @SI3 8514 BS1S 0516 8517 @520 @521 8522 €523 1330 2462 2463 2464 2465 2466 2467 2478 2471 2472 2473
0340 0524 8525 0526 0527 0538 0531 @532 €533 0534 0535 1340 2474 2475 2476 2477 2500 2501 2502 2503 2504 2505
0350 0536 ©537 @548 8541 0542 2543 544 Q45 B546 0547 1350 2506 2587 251@ 2511 2512 2513 2514 2515 2516 2517
0360 8558 @551 ©552 8553 0554 @555 0556 8557 056% 5561 1368 252¢ 2521 2522 2523 2524 2525 2526 2527 253@ 2531
2a7e 0562 @563 0564 0565 €566 0567 0570 @571 £572 =72 1370 2532 2533 2534 2535 2536 2537 2548 2541 2542 2543
8380 2574 8575 0576 08577 @608 @601 C622 0603 8664 0&5 1380 2544 2545 2546 2547 2550 2551 2552 2553 2554 2555
03se 8606 0687 @616 0611 B612 G613 G614 6615 8616 C&17 1390 2556 2557 2568 2561 2562 2563 2564 2565 2566 2567
(211] 0620 0621 0622 0623 D624 2625 B626 2627 0630 C&3: 1400 2578 2571 2572 2573 2574 2575 2576 2577 2600 2601
o410 2632 0633 8634 0635 0636 G637 C640 0641 0642 0E43 1410 2602 2603 2684 2605 2606 2607 2618 2611 2612 2613
420 0644 D645 08546 D64T GESZ 0651 B652 8653 0654 F6ESS 1420 2618 2615 2616 2617 2620 2621 2622 2623 2624 2625
2430 2656 0657 08660 06661 0662 8683 0664 C665 C666 C667 1430 2626 2627 2638 2631 2632 2633 2634 2635 2636 2637
o440 8670 0671 @672 B6T3 0674 8675 0576 0677 BICS 0731 1440 2640 2641 2642 2643 2644 2645 2646 2647 2658 2651
2450 782 @723 @704 ©785 ©706 @767 0712 @711 B712 €713 1450 2652 2653 2654 2655 2656 2657 2660 2661 2662 2663
2460 e714 @715 @716 8717 08720 8721 B722 (723 8724 G725 1460 2664 2665 2666 2667 2670 2671 2672 2673 2674 2675
2470 8726 ©727 @73@ @731 0732 @733 0734 0735 0736 0737 1470 2676 2677 2700 2721 2782 2703 2704 2785 2706 2707
0480 @740 @741 0742 @743 @744 0745 @746 @747 @750 8751 1480 2710 2711 2712 2713 2714 2715 2716 2717 2720 2721
8490 8752 0753 0754 @755 0756 @757 0768 8761 8762 9765 | 1490 2722 2723 2724 2725 2726 2727 2738 2731 2732 2733
° 1 2 3 4 s 6 7 [9] 1 2 3 4 s 6 7 8 9
0500 @764 8765 ©766 8767 8770 0771 0772 @773 @774 0715 1500 2734 2735 2736 2737 2748 2741 2742 2743 2744 2745
os1e @776 8777 1008 1801 1802 1003 l0A4 105 1066 1007 1s1e 2746 2747 2758 2751 2752 2753 2754 2755 2756 2757
es2e 1210 1ell 1812 1913 1814 1015 1e16 1017 1628 1021 1520 2763 2761 2762 2763 2764 2765 2766 2767 2770 2771
0530 1822 1823 1224 1825 1826 1027 1030 1031 1832 1033 1530 2772 2773 2774 2175 2776 2777 3000 30801 3002 3003
8540 1234 1035 1836 1037 1840 1041 1042 1043 1844 1045 1548 3pe4 3805 3006 3907 3018 3611 3ei2 3813 3014 30815
0550 1046 1047 1052 1051 1852 1053 1054 1055 10856 1057 155¢ 3016 3017 3828 3821 3022 3023 3024 3825 3826 3027
es6e 1260 1061 1862 1063 1064 1065 1866 1067 10780 1271 1560 3030 3831 3032 3033 3834 3035 3836 3037 3040 384l
057¢ 1072 1673 1074 1075 1@76 1877 1188 1101 1182 1103 1578 3042 3843 3044 3845 3046 3047 3050 305! 3052 3853
0580 1104 1105 1106 1187 111¢ 1111 1112 1113 1114 1118 1588 3054 3055 3856 3657 3860 3061 3062 3063 3064 30865
0590 1116 1117 1128 1121 1122 1123 1124 1125 1126 1127 1590 3066 3267 307@ 3071 3872 3073 3874 3075 3676 3077
0600 113¢ 1131 1132 1133 1134 1135 1136 1137 1148 1141 1660 31008 3121 3102 3103 3104 3185 3186 31p7 3118 3111
e61@ 1142 1143 1144 1145 1146 1147 1150 1151 1152 1153 1610 3112 3113 3114 3115 3116 3117 3128 3121 3122 3123
0620 1154 1155 1156 1157 1160 1161 1162 1163 1164 1165 1620 3124 3125 3126 3127 3132 3131 3132 3133 3134 23135
8630 1166 1167 1178 1171 1172 1173 1174 1175 1176 1177 1630 3136 3137 3140 3141 3142 3143 3144 3145 3146 3147
26408 1200 1201 1202 1203 1204 1205 1206 1207 1210 1211 1640 3159 3151 3152 3153 3154 3155 3156 3157 3166 316l
2650 1212 1213 1214 215 1216 1217 1220 1221 1222 1223 1650 3162 2163 3164 3165 3166 3167 317¢ 3171 3172 3173
0660 1224 1225 1226 1227 123¢ 1231 1232 1233 1234 1235 1660 3174 3175 3176 3177 3200 3201 322 3203 3284 3205
8670 1236 1237 1240 1241 1242 1243 1244 1245 1246 1247 1672 3206 3207 321@ 3211 3212 3213 3214 3215 3216 3217
0680 1250 1251 1252 1253 1254 1255 1256 1257 1268 1261 1680 3029 3221 3222 3223 3224 3225 3226 3227 3238 3231
0690 1262 1263 1264 1265 1266 1267 127¢ 1271 1272 1273 1690 3232 3233 3234 3235 3236 3237 3240 3241 3242 3243
o708 1274 1275 1276 1277 1300 1301 1382 1383 1304 1305 1726 3244 3245 3246 3247 3250 3251 3252 3253 3254 3255
e71e 1386 1307 131e 1311 1312 1313 1314 1315 1316 1317 1710 3256 3257 3268 3261 3262 3263 3264 3265 3266 3267
0720 1320 1321 1322 1323 1324 1325 1326 1327 1330 1331 1720 327¢ 3271 3272 3273 3274 3275 3276 3277 3300 3301
2730 1332 1333 1334 1335 1336 1337 1340 1341 1342 1343 1730 33g2 3303 3304 3305 3386 23@7 3310 3311 3312 3313
0749 1344 1345 1346 1347 135@ 1351 1352 1353 1354 1355 1749 3314 3315 3316 3317 3329 3321 3322 3323 3324 3323
8750 1356 1357 1368 1361 1362 1363 1364 1365 1366 1367 1750 3326 3327 3330 3331 3332 3333 3334 3335 3336 3337
8760 137 1371 1372 1373 1374 1375 1376 1377 1400 1401 1768 3340 3341 3342 3343 3344 3345 3346 3347 3358 3351
2770 1402 1403 1404 1485 1406 1407 1410 1411 1412 1413 1770 3352 3353 3354 3355 3356 3357 3360 3361 23362 3363
p780 1414 1415 1416 1417 1420 1421 1422 1423 1424 1425 1788 3364 3365 3366 3367 3374 3371 3372 3373 3374 3375
o790 1426 1427 1430 1431 1432 1433 1434 1435 1436 1437 1790 3376 3377 3488 3491 3482 3483 3404 34085 3406 3407
pspe 1449 l44) 1442 1443 1444 1445 1446 1447 1450 1451 1800 3410 3411 3412 3413 3414 3415 3416 3417 3420 3421
2810 1452 1453 1454 1455 1456 1457 1460 1461 1462 1463 1810 3422 3423 3424 3425 3426 3427 3438 3431 3432 3433
@820 1464 1465 1466 1467 1470 1471 1472 1473 1474 1475 1820 3434 3435 3436 3437 3440 3441 3442 3443 3444 3445
2830 1476 1477 158 1581 1502 1583 1504 1585 1506 1507 1830 3446 3447 3450 3451 3452 3453 3454 3455 3456 3457
0840 1510 1511 1512 1513 1514 1515 1516 1517 15286 1521 1840 3460 3461 3462 3463 3464 3465 3466 3467 34708 3471
2850 1522 1523 1524 1525 1526 1527 1530 1531 1532 1533 1850 3472 3473 3474 3475 3476 3477 3508 3501 3502 3583
0860 1534 1535 1536 1537 1S40 1541 1542 1543 1544 1545 1860 3504 3525 3586 3507 3518 3511 3512 3513 3514 3515
2878 1546 1547 1550 1551 1552 1553 1554 1555 1556 1557 1870 as1€ 3517 352@ 3521 3522 3523 3%24 3525 3526 3527
2880 1568 1561 1562 1563 1564 1565 1566 1567 1570 1571 1880 353@ 3531 3532 3533 3534 3535 3536 3537 3548 3541
0890 1572 1573 1574 1575 1576 1577 168@ 1681 1602 1603 1890 3542 3543 3544 3545 3546 3547 3550 3551 3552 3553
0900 1604 1605 1686 1687 1618 1611 1612 1613 1614 1615 1920 3554 3555 3556 3557 3568 3561 3562 3563 3564 3565
0912 1616 1617 1620 1621 1622 1623 1624 1625 1626 1627 1918 3566 3567 3578 3571 3572 3573 3574 3575 3576 3577
0920 1630 1631 1632 1633 1634 1635 1636 1637 1648 164! 1920 3620 3681 3682 3623 3624 3685 3606 3607 3610 3611
2930 1642 1643 1644 1645 1646 1647 1650 1651 1652 1653 1930 3612 3613 3614 3615 3616 3617 3620 3621 322 3623
0940 1654 1655 1656 1657 1660 1661 1662 1663 1664 1665 1940 3624 3625 3626 3627 3630 3631 3632 3633 3634 3635
2950 1666 1667 1670 1671 1672 1673 1674 1675 1676 1677 195¢ 3636 13637 3640 3641 3642 3643 3644 3645 3646 3647
2960 1700 1701 1782 1783 1704 1705 1706 1707 1710 1711 1960 3658 23651 3652 3653 3654 3655 3656 3657 3660 3661
o970 1712 1713 1714 1715 1716 1717 1720 1721 1722 1723 1970 3662 3663 3664 3665 3666 3667 367¢ 3671 3672 3673
evee 1724 1725 1726 1727 173¢ 1731 1732 1733 173a 173§ 198¢ 3674 3675 3676 3677 3788 3781 3782 3703 3704 3705
2990 1736 1737 1748 1741 1742 1743 1744 1745 1746 1747 1990 3706 3707 371@ 3711 3712 3713 3714 3715 3716 3717

[} 1 2 3 4 5 6 7 8 9 [-] 1 2 3 4 5 6 7 & 5

2000 372¢ 3721 3722 3723 3704 3725 3726 3727 3730 3731 3000 5670 5671 5672 5673 5674 5675 5676 5677 STRD s570)
2010 3732 3733 3734 3735 373C 3737 3740 3741 3742 3743 Jolie 5782 S703 5784 5705 5706 $S707 S710 S711 5712 573
2n2o 3744 3745 3746 3747 3750 3751 3752 3753 3754 3785 3020 5714 5715 S716 5717 572 S721 5722 S723 5724 s72%
2336 275¢ 3757 2760 3761 3762 3763 3764 3765 3766 3767 Jo3e 5726 S$727 5738 5731 5732 5733 5734 5735 5736 5727
2040 3770 3771 37712 3773 3774 3775 3776 3777 4000 4041 3040 5740 S741 5742 5743 5744 5745 S746 5747 5753 57s5)
2356 4002 4003 4004 400S 4086 400GT 4018 4011 4812 40613 305¢ 5752 5753 5754 5755 5756 5757 5768 576l 5762 5763
2060 4314 4Q1S 4016 4B1T 4B28 4B21 4022 4B23 4024 4025 3060 5764 5765 5766 5767 S77¢ 5771 5772 5773 5774 5775
2370 4026 4027 4030 4831 4032 4633 4034 4035 4036 4037 3070 5776 S777 6008 6AN1 6AN2 6003 60M4 6805 6806 €80T
2080 4Q4p 4041 4BA2 4B43 4@44 4BLS 4046 404T 4050 4@51 3880 6812 6011 6PR12 6013 6814 6015 6816 €MLT 6028 6721
290 4052 4053 4054 4B5S 4056 4DST 4060 4861 4062 4363 3090 6022 6M23 6024 6025 6026 6027 6030 6831 6332 6332

2100 4B64 4065 4066 4067 4@T0 4271 4872 4973 4874 4075 3100 6834 6835 6036 6837 6040 6841 6842 6043 6844 6M4sS
2110 4076 4877 4100 4101 4162 4183 4104 4105 4186 4107 S11e 6046 6047 6050 6851 66452 6053 6054 6855 6256 6057
2120 411e 411l 4112 4113 4114 4115 4116 4117 4120 4121 312e 6060 6861 6062 6063 6064 6065 6066 6067 6072 6071
2130 4122 4123 4124 4125 4126 4127 4130 4131 4132 4133 3130 6072 6073 6074 6075 6876 6877 6100 6101 61C2 6163
2140 4134 4135 4136 4137 4149 4141 4142 4143 4144 4145 3140 6184 6105 6186 6107 6118 6111 6112 €113 6114 6115
2152 4146 4147 4150 4151 4152 4153 4154 4155 4156 4157 3150 6116 6117 6120 6121 6122 6123 6124 6125 6126 6127
2160 4166 4161 4162 4163 4164 4165 4166 4167 4178 4171 3160 6130 6131 6132 6133 6134 6135 6136 6137 614¢ 6141
2170 4172 4173 4174 4175 4176 4177 4280 4201 4282 4203 3170 6142 6143 6144 6145 6146 6147 6150 6151 6152 6153
2180 4204 4205 4206 4207 4210 4211 4212 4213 4214 4215 3180 6154 6155 6156 6157 6168 6161 6162 6163 6164 6165
2190 4216 4217 4228 4221 4222 4223 4224 4225 4226 4227 3190 616 6167 617¢ 6171 6172 6173 6174 6175 6176 6177
2200 4230 4231 4232 4233 4234 4235 4236 4237 4240 4241 3200 6260 6201 6202 62063 6204 6205 6206 6207 6218 6211
2210 4242 4243 4244 4245 4246 4247 4250 4251 4252 4253 XR1e 6212 6213 6214 6215 6216 6217 6228 6221 6222 6223
2220 4254 4255 4256 4257 4260 4261 4262 4263 4264 4265 sez2e 6224 6225 6226 6227 6238 6231 6232 6233 6234 6235
2230 4266 4267 4270 4271 4272 4273 4274 4275 4276 4277 230 6236 6237 6240 6241 6242 6243 6244 6245 6246 6247
2240 43@e 43@1 4302 4303 4304 4305 4306 4307 4310 4311 J40 6250 6251 6252 6253 6254 6255 6256 6257 6260 6261
2250 4312 4313 4314 4315 4316 4317 4320 4321 4322 4323 3250 6262 6263 6264 6265 6266 6267 6278 6271 6272 6273
2260 4324 4325 4326 4327 433@ 4331 4332 4333 4334 4335 s260 6274 6275 6276 6277 6308 6301 6302 6383 6304 6305
2270 4336 4337 4340 4341 4342 4343 4344 4345 4346 4347 32170 6306 6307 6318 6311 6312 6313 6314 6315 6316 6317
2286 4350 4351 4352 4353 4354 4355 4356 4357 4360 4361 a280 6320 6321 6322 6323 6324 6325 6326 6327 6338 6331
2290 4362 4363 4364 4365 4366 4367 4370 4371 4372 4373 290 6332 6333 6334 6335 6336 6337 634@ 6341 6342 6343
2300 4374 4375 4376 4377 4400 4401 4402 4403 4404 4405 3300 6344 6345 6346 6347 6358 6351 6352 6353 6354 6355
2316 4406 4487 4410 4411 4412 4413 4414 4415 4416 4417 31e 6356 6357 6360 6361 6362 6363 6364 6365 6366 6367
2320 4420 4421 4422 4423 4424 4425 4426 4427 4433 4431 3320 6378 6371 6372 6373 6374 6375 6376 6377 6488 6401
2330 4432 4433 4434 4435 4436 4437 4440 444) 4442 4443 3330 6402 6403 64D4 6485 6406 6407 6410 6411 6412 6413
2340 4au4 4445 4446 4447 4450 4451 4452 4453 4454 4455 3340 6414 6415 6416 6417 6420 6421 6422 6423 6424 6425
2350 4456 445T L4460 4461 L4462 4463 4LL64 A4465 4466 446T 3350 6426 6427 6430 6431 6432 6433 6434 6435 6436 6437
2360 447Q 4471 4472 4473 44T A4TS 4476 4477 4S80 4501 3360 6440 6441 6442 6443 6444 6445 6446 6A4T 6456 6451
2370 4562 4583 4564 4505 4586 4587 4510 4511 4512 4513 370 6452 6453 6454 6455 6456 6457 6468 6461 6462 6463
2380 4514 4515 4516 4517 4526 4521 4522 4523 4524 4525 pec]-1] 6464 6465 6466 6467 6470 6471 6472 6473 6474 6475
2398 4506 4527 4538 4531 4532 4533 4534 4535 4536 4537 3390 6476 6477 6508 6501 6502 6503 6584 6505 6506 6597
24p0 4540 4541 4SA2 4543 AS44 4SAS 4546 4S54T 4550 4551 400 6518 6511 6512 6513 6514 6515 6516 6517 6520 6521
2u41p 4552 4553 4554 4SS5 4556 4557 4560 4561 4562 4563 Jalo 6522 6523 6524 6525 6526 6527 65380 6531 6532 6533
2420 4564 4565 4566 4567 4578 4571 4572 4573 4574 4575 320 6534 6535 6536 6537 65400 6541 6542 6543 6544 6545
2430 4576 4577 4600 4681 4602 4683 4684 4605 466 4607 3430 6546 6547 6558 6551 6552 6553 6554 6555 6556 6557
2440 4610 4611 4612 4613 4614 4615 4616 4617 4620 4621 3440 6568 6561 6562 6563 6564 6565 6566 6567 6578 6571
245¢ 4622 4623 4624 4625 4626 4627 4638 4631 4632 4633 3450 6572 6573 6574 6575 6576 6577 6620 6681 6682 6663
2460 4634 4635 4636 4637 464D 4641 4642 4643 4644 4645 3460 6604 6605 6686 6607 6610 6611 6612 6613 6614 6615
2470 4646 464T 4650 4651 4652 4653 4654 4655 4656 4657 3470 6616 6617 6628 6621 6622 6623 6624 6625 6626 6627
2488 4660 4661 4662 4663 4664 4665 4666 4667 4678 467) 3480 6630 6631 6632 6633 6634 6635 6636 6637 6640 6641
2490 4672 4673 4674 46715 4676 4677 4700 4701 4782 41703 3490 6642 6643 6644 6645 6646 6647 6650 6651 6652 6653
° 1 2 3 4 s 6 7 8 9 0 1 2 3 4 s 6 7 8 9

2500 4704 4705 4706 4707 4718 4711 4712 4713 4714 4715 3598 €654 6655 6656 6657 6668 6661 6662 6663 6664 6665
2519 4716 4717 4728 4721 4722 4723 4724 4725 4726 4727 351C 6666 6667 6670 6671 6672 6673 6674 6675 6676 6677
2520 4730 4731 4732 4733 4734 4735 4736 4737 4748 4741 3520 670 6701 6702 6783 6704 6785 6786 6707 6710 6711
2530 4742 4743 4744 AT4S 4746 4747 4TSP 4TS1 4752 4753 3530 6712 6713 6714 6715 6716 6717 6720 6721 6722 6723
2540 4754 4755 4756 4757 4768 4161 4762 4763 4764 4765 3543 6724 6725 6726 6727 6738 6731 6732 6733 6734 6735
2550 4766 4767 47180 4171 47172 4773 4774 4715 4776 4117 3556 6736 6737 6748 6741 6742 6743 6744 6745 6746 6747
2560 5000 S@@1 5002 S063 5084 S805 5006 5007 5010 S911 3568 6750 6751 6752 6753 6754 6755 6756 6757 6768 6761
2570 5812 5013 5014 5815 S016 5017 5020 5021 5922 5023 3575 6762 6763 6764 6765 6766 6767 6770 6771 6772 6773
2580 5@24 S5@25 5026 S827 5030 S831 5832 S033 5034 5835 3586 6774 6775 6776 6777 7660 7601 7082 7083 7004 7A@S
2590 5036 5@37 5048 5841 S@42 S@43 5044 S045 5946 SB47 3598 7006 7067 7818 7811 7Tel2 7813 7914 7015 7016 7217
2600 505¢ 50851 5852 5853 5054 SB@S5 5856 5057 5068 S061 3660 7020 7021 7022 7023 7024 7025 7026 7027 7830 7031
2610 5862 5@63 5064 5065 S066 5067 5070 5071 5072 S873 3610 7832 7833 7034 7835 7036 7037 7048 7041 7042 7043
2620 5874 SB75 5876 5877 S160 5181 5182 S183 5104 5185 2620 7044 7845 7246 7047 7056 7051 7852 7853 7054 7055
2630 51906 5107 S11@ Si11 S112 5113 S114 5115 5116 SI117 3620 7056 7057 7068 7061 7862 7063 7864 7865 7066 7067
2640 5128 5121 5122 5123 5124 5125 5126 5127 5138 5131 3640 707@ 7871 7072 7073 7074 7075 1876 71077 7186 7101
2650 5132 5133 5134 5135 S136 5137 5140 5141 5142 5143 3650 7182 7183 7184 7185 7186 7187 7118 7111 7112 7113
2669 §144 5145 5146 5147 5158 5151 S152 5153 5154 5155 3660 7114 7115 7116 7117 7120 7121 7122 7123 7124 7125
2670 5156 S157 5160 5161 5162 5163 5164 5165 5166 5167 3670 7126 7127 7138 7131 7132 7133 7134 7135 7136 7137
2680 51786 5171 5172 5173 5174 S175 5176 5177 5200 5281 3680 7140 7i4l 7142 7143 7144 7145 T146 T14T 71580 715!
2690 5292 5203 5204 5205 5206 5207 S21@ 5211 5212 5213 3698 7152 7153 7154 7155 7156 7157 7168 7161 7162 7163
2700 5214 S21S 5216 S217 5228 5221 5222 S223 5224 5225 3790 7164 7165 7166 7167 7178 7171 7172 T173 7174 7175
2710 5226 5227 523@ 5231 5232 5233 5234 5235 S236 5237 3710 7176 7177 7200 7201 7202 7203 7204 7205 7286 7207
2720 S248 5241 5242 5243 S244 5245 5246 5247 5258 5251 3720 7210 7211 7212 7213 7214 7215 7216 7217 7220 7221
2730 5252 5253 5254 5255 5256 5257 5268 5261 5262 5263 a738 7222 7223 7224 17225 7226 7227 723@ 7231 7232 7233
2740 5264 5265 5266 5267 5278 5271 5272 5273 5274 5215 3740 7234 7235 7236 7237 7248 7241 7242 7243 7244 7245
2750 5276 5277 5388 5381 5302 5383 5304 5385 S386 5307 37158 7246 7247 7250 7251 7252 7253 7254 7255 7256 71257
2760 5310 5311 5312 5313 5314 5315 5316 5317 5329 5321 4760 7260 7261 7262 7263 7264 7265 71266 1267 1278 7271
2770 5322 5323 5324 5325 5326 5327 5338 5331 5332 5333 770 7272 7273 7274 7275 7276 7277 7308 7381 7382 7303
2786 5334 5335 5336 5337 53408 5341 5342 5343 5344 5345 2788 7304 73@5 73@6 7307 7318 7311 7312 7313 7314 7315
2790 5346 5347 5358 5351 5352 5353 5354 5355 5356 5357 3790 7316 7317 7320 7321 7322 7323 7324 7325 7326 7327
2800 5360 5361 5362 5363 5364 5365 5366 5367 5378 5371 3808 733@ 7331 7332 7333 7334 7335 7336 7337 7340 7341
2810 5372 5373 5374 5375 5376 5377 5400 5401 S482 5403 810 7342 7343 7344 7345 7346 7347 7350 7351 7352 7353
2820 5404 5405 5406 5407 5418 S411 5412 5413 S414 5415 ag29 7354 7355 7356 7357 7368 7361 1362 71363 7364 1365
2838 S416 S417 5428 5421 5422 S423 5424 5425 5426 5427 830 7366 7367 7370 7371 7372 7373 7374 7375 1376 7377
2840 5438 5431 5432 5433 S434 5435 5436 5437 S440 S441 w840 7400 7481 7402 7403 744 7425 7466 7427 T4le 7411
2850 S442 S443 S444 S445 S446 S44T S45D S451 5452 5453 3850 7412 7413 7414 7415 7416 T4l1 7420 7421 1422 7423
2860 5454 5455 5456 5457 5468 5461 S462 5463 5464 S465 3260 7424 7425 7426 7427 7430 7431 7432 7433 7434 7435
2870 5466 5467 5470 5471 S472 5473 5474 5475 5476 5477 3870 7436 7437 7488 7441 T442 T443 Ta44 1445 Tsa6 7447
2888 5508 S5@1 5582 5503 5524 5585 5586 5507 5519 5511 589 745@ T4S1 7452 7453 7454 7455 7456 T4S5T 7460 7461
2892 5512 5513 5514 5515 S516 5517 55280 5521 5522 5523 e90 7462 7463 T464 T46S T466 7467 T470 T4Ti 1472 7473
2900 5524 5525 5526 5527 553@ 5531 5532 5533 5534 5535 2900 7474 7475 7476 7477 7560 7501 7502 7503 7504 75€5
2919 5536 5537 5540 5541 5542 5543 5544 5545 5546 5547 2510 75¢6 7587 7518 7511 7512 7513 7514 7515 7516 7517
2920 5558 5551 5552 5553 5554 5555 5556 5557 5568 5561 asee 7%2¢ 7521 7522 7523 7524 7525 7526 7527 7538 7531
2930 5562 5563 5564 5565 5566 5567 5570 5571 5572 5573 3920 7532 7533 7534 7535 7536 7537 7540 7541 7542 7543
2940 5574 5575 5576 5577 S600 5601 5602 5683 5604 5605 2940 7544 7545 7546 7547 7556 7SSt 7552 7553 7554 7555
2950 5606 5687 5610 S611 S612 5613 5614 5615 5616 5617 3958 7856 7557 7566 7561 7562 7563 7564 7565 7566 7567
2968 5620 5621 5622 5623 5624 5625 5626 5627 5630 5631 3960 787¢ 7571 7572 7573 7574 71575 71576 71577 760@ 76E1
2970 5632 5633 5634 5635 5636 5637 5640 5641 5642 5643 397¢ 7602 7623 7684 7T6B5 7666 7687 7618 7611 71612 7613
2986 5644 5645 5646 5647 5650 5651 5652 5653 5654 5655 3968 7614 7615 7616 7617 1628 T621 17622 71623 7624 7625
2998 5656 5657 5660 5661 5662 5663 5664 5665 5666 5667 3996 7626 7627 7638 7631 7632 7633 7634 7635 7636 7637
83

84

o 1 2 3 4 S [7 13 9
4200 764C 7641 7642 7643 1644 7€45 7646 7647 7650 7651
4810 7€52 7¢53 7654 7655 7656 1657 TE6M 7661 706€2 7663
ac20e 76€4 7665 T6EE 7667 7670 7671 7672 7673 7674 7675
4030 7676 7677 7700 7701 7702 7793 7704 7705 7706 707
aeuap 7718 7711 7712 7713 7714 7715 7716 7717 7720 7721
4250 7722 7723 7724 77128 71726 7727 7738 7731 7732 7733
1R 60 7734 7735 7736 71737 7740 1741 7742 7742 17744 7748
4070 7746 7747 7758 7751 7752 7753 7754 7755 7756 7757
4C80 7760 7761 77¢€2 7763 7764 776% 7766 1761 71770 7771
£2390 7772 7773 7774 7775 1776 7777 0008 66921 eez2 2023
4100 eoes €205 ©Ce6 007 0010 0311 gel1e ©.l13l cela @215
qlie ool é eel17 ee20 6021 0B22 6C23 09224 0025 DL2é eega217
4120 6032 Cp3! 0032 B33 06234 @035 @036 Q037 PO4B GC4al
4130 @042 0043 QC44 0045 BO46 @B47 @052 ©6S1 0652 G653
4t 40 2054 0055 QR56 0CS7T ©0€8 0061 262 0063 @Goe4 ee65
415 PO66 BI67 cecre @87 0B72 @073 @074 GBS Be76 ec77
4160 8102 ©16) G102 @!B3 Q104 0105 E106 @187 Glle 0111
4170 2112 @113 @ll4 2115 ©8l16 0117 @120 @121 @122 @123
41806 8124 2125 @126 0127 2130 2131 @132 Q133 @134 n13s
4190 B136 @137 @146 8141 0142 2143 @144 Q145 08146 @147
@£2200 @156 @151 @152 @153 0154 @155 @156 0157 A160 D161
4210 Q162 0163 O164 Q165 Q166 Q@167 0170 ©6171 8172 2173
@220 2174 2175 @176 0177 0200 @201 0202 0203 @204 ©295
&30 2206 0207 ©210 08211 @212 @213 0214 9215 H216 @217
@240 0220 0221 Q222 @223 @224 @225 5226 Q227 @238 231
L2250 9232 0233 B234 B235 B236 237 02408 0241 0242 243
&L260 8244 0245 @246 @247 @258 2251 0252 ©253 @254 ©ess
@70 B256 0257 D268 ©26) @262 0263 @264 0265 266 267
@280 8278 @271 9272 ©273 9274 @275 0276 0277 2300 B30
4290 2302 @303 @304 Q385 @306 0307 0310 0311 @312 0313
4300 8314 9315 ©316 0317 @320 0321 @322 @323 0324 @325
4310 0326 @327 ©330 @331 @332 0333 8334 0335 @336 @337
4320 0340 ©B34) @342 0343 @344 9345 ©346 0347 @350 ©03S1
4330 0352 0353 08354 0355 08356 @357 @366 0361 0362 0363
4340 @364 @365 @366 0367 @378 ©371 0372 0373 0374 03175
4350 2376 @377 0406 04p] G402 ©4023 0404 0405 0406 0407
4360 Q410 P411 B4l2 Q413 Q414 Q415 QG416 41T Q420 0421
43702 0422 Q423 Q424 Q425 0426 ©427 D439 @43l @432 0433
4380 0434 @435 436 0437 0440 04a4) 8442 Q443 Q4a44 Q445
4390 0446 Q447 Q450 451 @452 @453 Q454 Q455 QAS6 D4ST
4400 0460 0461 0462 0463 BU64 QL6S QBU66 Q467 Q4TG Q4T
10 2472 Q473 0474 Q475 QAT6 Q47T @500 0501 2502 ASe3
4420 B504 @505 ©H586 0507 6519 0511 0512 513 6514 0515
4430 8516 ©517 ©520 0521 8522 0523 0524 0525 2526 0527
4440 2538 ©531 0532 0533 0534 0535 §536 0537 0548 0541
4450 @542 0543 0544 0545 @546 0547 @550 ©5S1 0552 @553
44360 @554 @555 @S56 6557 €568 0561 0562 @563 0564 0565
4470 0566 ©567 ©5706 @571 @572 @573 @574 ©575 0576 0577
4480 0600 0601 0602 06083 0604 0605 0606 0607 0610 @611
4490 @612 B&13 B614 0615 B616 0617 628 0621 8622 @623
Octal Decimal

10000

100000

1000000

23,420

303, 240
3,641,100

I

4,096
32,768
262, 144

10,000
100,000
1,000,000

INDEX

A

Accumulator, 15, 18
Addresses
definition, 13
program memory, 13
data memory, 13
page relative, 22
labeled, 25
Addressing
immediate, 19
direct, 21
indirect, 22
AND, logical, 10, 69
ASCII code, 29, 74
Assembler, 25
definition, 26
use of, 56, 62
logic of, 54
command summary, 61

Base, 4

Binary loader, 49

Binary notation, 2
conversion to decimal, 3
addition, 3
conversion to octal, 3

Binary tape format, 52

Bit assignments, 76

Breakpoints, 69

C
Clock, 43
Comments, 20, 65
Cores, 1

D

Debugging, 26, 63
Decimal octal conversion table, 82

Destinations, 18
Digital-to-analog converters, 41
Digitizer instructions, 43
Display instructions, 41-42, 78
Division

single precision, 38

double precision, 39
Drivers, 1
Dump, 69

Editor, 54
use of, 58
End effects, 65
Exit, 34
Exercises, 12, 24, 46, 72, 86

F

Flowchart, 26

G
Group I instructions, 16
Gullibility, 64

H

Hardware multiply-divide, 37

I

Initialization, 63
Input-Output (I/O) instructions, 40
Instruction register, 14

85

J P
JMP instruction, 27 Paging, 22
JMS instruction, 31 Pointers, 23

incrementing, 27
Powers of two, table of, 81

L Program counter, 15
Programs
Labels, 25 to add three numbers, 22
Link, 15, 35 to add the first and last points
used as flag, 39 in memory, 23
Loading programs, 48 to add ten numbers, 26-27

to read the Teletype, 30
to print "NIC", 31, 32

M to accept octal characters, 34
for multiplication, 38
Mask, 10, 69 for division, 38, 39
Measure mode, 44 for inclusive OR, 40
Modifying the assembler, 80 to display 2K, 42
Miscellaneous instructions, 35 to start measure mode, 44
Mnemonics, 16, 26 to display segment from
Multiplication, 38 pushbuttons, 45
Multiplier-quotient register, 16, 37 Protect program button, 13
Pushbuttons on 290 Display Control,
48, 66
N
Negative numbers R
definition, 9
Group I instruction, 17 Ready flag, 30
Nicobug II, 66 Remainder after division, 38, 39

Nico-Loadeon, 50

S
(0]
Sense wire, 2
Octal Shift instructions
number system, 3 logical, 33
conversion to and from binary, 4 arithmetic, 33
arithmetic, 4 integer, 33, 38
conversion to decimal, 5 Sign bit, 9
One's complement SKIP, 34
definition, 7 Source tapes, 54
in octal, 8 STATUS instruction, 44
of a 20-bit number, 8 Storage layout, 67
Group I instructions, 17 Subtraction
Operator, 19 in octal, 10

OR, inclusive, 11, 40 by Group I instructions, 17

Suffixes, 18, 19
Switch register, 48, 66
Sweep ramp, 43
Syntax, 19

Teletype
LOCAL operation, 28
LINE operation, 28
switch functions, 28
programming, 30
ready flag, 30
initialization, 37

Test instructions, 34, 77

Two's complement, 8

v

Vertical display scale switch, 41-42

Words
definition, 2
range, 2

Y/

Zero effects, 65
Zero test register, 16, 18

87

E SALES OFFICES

CT, MA, ME, NH, RI, VT CA, NV, OR, WA, HI

Harding Bush) Robert Olsen

Nicolet Instrument Corporation Nicolet Instrument Corporation .

2120 Commonwealth Avenue 145 East Dana Street

Auburndale, MA 02166 Mountain View, CA 94041

(617) 969-7420 (415) 969-1258

TWX: 710-335-1954 ‘

Upper New York State Canada ’

James Lappegaard) Allan Crawford Associates

Nicolet Instrument Corporation 640 - 11th Avenue S. W., Suite 102

245 Livingston Street Calgary, Alberta T2R OE2

Northvale, NJ 07647 (413) 261-0780

(201) 767-7100

TWX: 710-991-9619 Allan Crawford Associates .
1330 Marie Victorian Boulevard East

NY, NJ, PA. Longueuil, P. Q. J4G 1A2

Bernard Conti (514) 670-1212

Nicolet Instrument Corporation TWX: 610-422-3875 .

P. O. Box 36

0ld Bethpage, NY 11804 Allan Crawford Associates

(516) 249-6360 6427 Northam Drive ‘
Mississauga, Ontario, L4B 1J5

Wash.DC , MD, VA, WV,DE (416) 678-1500

James Cavanaugh TWX: 610-492-2119

Nicolet Instrument Corporation .

4620 wisconsin Avenue, N. W. Allan Crawford Associates

Washington, DC 20016 1299 Richmond Road

(202) 686-0189 Ottawa, Ontario K2B 7Y4

IL, IN, MO, OH, KY (613) 829-9651 l

Frank B. Contratto TWX: 610-562-1670

Nicolet Instrument Corporation

500 East Higgins Road Allan Crawford Associates ‘

Elk Grove, IL 60007 234 Brooksbank Avenue

(312) 956-0404 North Vancouver, BC V7J 2Cl

T™WX: 910-222-5999 (604) 980-4831

IA, MI, MN, KS, ND, SD, NE, WI

Richard Bohn) European Countries
Nicolet Instrument Corporation Dr. Peter Langner
5225 Verona Road Nicolet Instrument GmbH
Madison, WI 53711 Goerdeler Strasse 48
(608) 271-3333 D-605 Offenbach am Main
TWX: 910-286-2713 West Germany
0611/852028
NC, SC, GA, AL, TN, FL, MS Telex: 841/4185411
Dr. H. B. Evans
Nicolet Instrument Qorporatlon Japan
140 South Dekalb Office Park Takeda Riken Industry Co., Ltd.
3009 Rainbow Drive 1-32-1, Asahi-cho, Nerima-ku
Decatur, GA 30034 Tokyo 176, Japan
(404) 243-1219 930~-4111

Telex 781/272-2140
TX, LA, OK, AR

Jerry A. Meyer) Australia

Nicolet Instrument Corporation ELMEASCO Instruments Pty. Limited
701 - 15th Street 7 Chard Road

Plano, TX 75074 Brookvale, N. S. W. 2100

(214) 424-8611 Australia

CO, NM, AZ, UT, MT, ID, WY New Zealand

Bruce B. Lent) ELMEASCO Instruments Pty. Limited
Nicolet Instrument Corporation P. O. Box 30515

6023 South Lamar Drive Lower Hutt

Littleton, CO. 80123 New Zealand

(303) 798-3561

e & adAaAaaa

