E
NICOLET 1080 SERIES

FLOATING POINT PACKAGE—1972

Description and Instructions

for

NIC-80/S-7209

Programming Manual—Volume i1

Nicolet Instrument Corporation
5225 Verona Road
Madison, Wisconsin

August 1972

2 0 ¢ 0 6 0 0000 090 90 0 0 09 0000

P O 7 ©® 0000000 YYOONOGOOSOEOSEOEESEI™ BO

I

III.

TABLE OF CONTENTS

DESCRIPTION OF THE FLOATING POINT PACKAGE

samp

Introduction

Reasons for Using the Floating Point Routines
Conversion to Binary Representation

Internal Representation of Binary Fractions

PROGRAMMING USING THE FLOATING POINT PACKAGE

RSN B

G.
H.
I

Pseudo-Registers

Offpage Subroutine Calls
Loading the FAC and FAR
Basic Arithmetic Routines
The Error Flag

Floating Point Input and Output

1. FLIP
2. FLOP
3. FIXOP

Conversion to Floating Point Format
Conversion of Floating Point Numbers to Fixed Point
Exercises

THE EXTENDED FUNCTIONS

D

HHD oW

Summary of the Extended Functions

Square, Square Root and Reciprocal Functions
Sine, Cosine and Arctangent

FLOG, FLOGN, FEXP and FEXPN

Extended Functions Programming Example
Exercises

ADVANCED PROGRAMMING CONCEPTS

FOmmpowy

Testing the Terminating Character of FLIP
Reading and Printing Characters
Multiplication and Division by Two

Testing the FAC for Zero

Skipping on Positive or Negative FAC
Determining of Floating Point Constants
Roundoff and Overflow

Exercises

DN DN =

ICEPK BRGNS TN

oo

11
12
12

13
13
13
14
14
14

15
15
16
16
17
17
18
19

V. ALGORITHMS USED IN THE EXTENDED FUNCTIONS

A, Introduction
B. Square Root
C. Sine
D. Cosine
E. Arctangent
F. Logarithm Base ten and Base e
G. Exponentiation, Base ten and Base e

VI LISTING OF BASIC ARITHMETIC

VII LISTING OF EXTENDED FUNCTIONS

TABLE 1. POINTERS TO FLOATING POINT, 1972

TABLE 11, FLOATING POINT PACKAGE SUMMARY

22
22
22
22
23
23
24

25

40

20
21

D O 7V © © 00O OO 9O PO O OO O OO SO

FLOATING POINT PACKAGE -- 1972

I DESCRIPTION OF THE FLOATING POINT PACKAGE
A, Introduction

The NIC Floating Point Package (FPP) is a collection of subroutines which free
the user from the need to program complex arithmetic operations, Each of the rou-
tines operates on a number in a floating point format, similar to that of scientific
notation., Floating Point-1972 occupies locations 6000-7577 and consists of two parts:
the Basic Arithmetic section, and the Extended Functions section. These routines
assume the presence of the hardware multiply-divide circuitry now standard on all
NIC-1080 computers.

B. Reasons for Using the Floating Point Routines

The NIC-1080 computer stores all information in 20-bit memory words, in
which one can represent unsigned integers from 0 to 220-1, This is equivalent to
0-1,048,575;9 or 0 - 3717777g. If one chooses to operate on signed numbers,
the range drops to -219 to 219-1, or -524, 288 to +524,287;,. Note that these
large numbers contain nearly six significant figures. However, if one is handling
small integers such as 20 or 6 or 1, the number of significant figures drops off
rapidly. Furthex_', it is not possible to represent fractional numbers successfully
within the limits of 20 bits without reducing the number of significant figures even
more drastically.

One solution to this problem is to represent each number in two 20-bit words,
or double precision, allowing one word to represent the integer part and the other
word to represent the fractional part, However, the same problem arises in this
format concerning very large and very small numbers. There is no effective way to
represent numbers such as 1019, or 10712 and still maintain the same significance,

The Floating Point package overcomes these problems by utilizing an internal
computer representation similar to scientific notation. In scientific notation, one
represents all numbers in the form n,nnnn x 10"™}, By convention, all numbers
are reduced to lie between 1 and 10, and are multiplied by an appropriate power of
ten,

Similarly, the internal representation or floating point format requires that
the number lie between 0.5 and 1. 0 and that the exponent be adjusted appropriately.
It is customary, although not altogether accurate, to refer to the number as the man-
tissa, and the power to which the base is raised to as the exponent, Since the 1080
is a binary machine, the exponent and mantissa are both binary (base 2) numbers,

C. Conversion to Binary Representation

Let us consider a simple example of this conversion procedure. The decimal
number 5 is represented in binary as 101, This is scaled right to lie in the requisite
range as follows:

101 x 20
10,1 x 21
1.01 x 22
.101 x 23

The last item in this list, . 101 x 23, is the representation used by the Floating Point
package., Since this is binary notation, the period to the left of the mantissa is called

the binary point,

Just as the decimal fraction . 213 means

2x 1071
+1 x 10~2
+3 x 1073

the binary fraction . 101 means
1x 2-1
+0 x 272
+1 x 273
Two more examples of conversions are given below,
5010 = 628 =110 0102
Shifting right, this equals ., 110010 x 26
The representation of fractions in octal and binary is somewhat harder to grasp,
but since the program takes care of all such conversions internally, it is not usually
necessary to become too familiar with this technique. If we wished to represent 0, 75

as a binary number, we need only recognize that 0,75 = 0.50 + 0. 25, and that this is
equivalent to 271 42-2, Thus, 0,75=0.11 x 20,

D. Internal Representation of Binary Fractions

Each floating point number is taken to occupy two consecutive locations. These
two 20-bit words are divided so that the exponent occupies 10 bits and the mantissa
30 bits. This division allows us to represent numbers having signed exponents in the
range +29 or +512. This is equivalent to roughly 10150 to 10¥150, The 30-bit man-
tissa is used to represent signed numbers in the range +229, This range is greater

Q

@ o0

than + 500,000,000 and thus implies an accuracy of better than eight decimal digits.

The two computer memory words are divided so that the sign of the exponent
and mantissa are each represented by the sign bit (bit 19) for rapid access during
calculations, Thus, the left hand ten bits of the first word constitute the exponent,
with bit 19 the sign, and the second word represents the most significant 19 bits
(plus sign) of the mantissa, The right hand ten bits of the first word, then, repre-
sent the least significant 10 bits of the mantissa. This is illustrated below.

First word lS&'n Exponent Low Order Mantissa
19 18 10 9 0
Second word lSEn H@ Order Mantissa
19 18 0

A negative mantissa or exponent is represented by its two's complement. Thus,
if the first word begins with octal digit 2 or 3 (bit 19 = 1) the exponent is negative and
if the second word begins with a 2 or 3, the mantissa is negative,

In summary, the principal advantages of using the floating point routines are

(1) All numbers are represented to the same number of significant figures.
(2) A much larger range of magnitudes can be represented.

(3) The programmer need not keep track of a binary point,

(4) Simplified programming of mathematical functions,

It should be pointed out that there are a few disadvantages to the use of these
routines, the most important being:

(1) The execution time is much slower than similar integer routines.
(2) An entire page of memory is required for the subroutines, so that less

space is available for programming,

25 Mol BN BN BN BN BN BN BN BE BN BN BN BN BN I W W AN W

11, PROGRAMMING USING THE FLOATING POINT PACKAGE

A, Pseudo-Registers

The FPP utilizes two pseudo-registers which behave as if they were actually
hardware registers: the Floating Accumulator (FAC) and the Floating Argument
(FAR). These are actually a set of memory locations, but their loading and opera-
tion is handled entirely by software internal to the FPP,

Just as all numerical operations appear to occur in the hardware accumulator
(AC) all floating point operations appear to occur in the FAC, Whenever an operation
requires two numbers, such as floating point addition, one number is loaded into each
of these registers prior to calling the subroutine to perform the addition, The result
is always held in the FAC. In all basic arithmetic operations, the FAR is destroyed
by the computation.

Locations 7572 and 7573 constitute the FAC and have been given the names
FACE and FACM, representing FAC-exponent and FAC-mantissa, During calcula-
tions internal to the FPP, the FAC is expanded into three locations: FACE, FACM
and FACML, where FACML is location 7574, The FAR occupies 7575, 7576 and
7577, At the end of internal calculation, the calculated result is rounded to 30 sig-
nificant bits and re-packed into the two-word format,

B. Offpage Subroutine Calls

Since the FPP resides on page 6000, all calls to these subroutines must be in
the form of an indirect call. It is convenient to give the subroutine pointers the same
names as the actual subroutines as a simple way of remembering the function of the
subroutine, Each memory page which refers to the FPP must have its own set of
pointers, however, and in the event that more than one page is assembled at a time,
different names must be given to the pointers to avoid the DL (duplicate label) error
message,

The convention that only one page is being assembled at a time will be adopted
in this manual in order to simplify the examples, Thus, to call the FPP addition
routine, one simply calls

JMS @ FADD /PERFORM FPP ADDITION
FADD, 7214 /POINTER TO ADDITION SUBROUTINE
This causes a JMS to the subroutine located at address 72148, and the subsequent

addition of the FAC and FAR, The subroutine returns to the calling program with
the result of the addition left in the FAC. The FAR is destroyed.

!QQQQQ’QQQQQ...Q...-.-

¢ ¢ ¢ O

P O 7 © 0000 OO OGIOO O OTS

C. Loading the FAC and FAR

Since all operations take place in the FAC and FAR, it is necessary that the
programmer load these registers before calling the arithmetic routines, Subrou-
tines to load these registers are part of the FPP, To load the FAC, one calls the
subroutine GETAC with the address of the first of the two words to be transferred
in the location following the call, The subroutine GETAC looks at this location and
takes its contents as the address of the first word to be moved into the FAC, This
is illustrated by the following example, in which the floating point constant FPNUM
is loaded into the floating accumulator.

Address Contents Mnemonic

2000 3000063 JMS @ GETAC /LOAD THE FAC

2001 2004 FPNUM /ADDRESS OF THE FIRST WORD
2002 5220 STOP /HALT THE PROCESSOR

2003 7036 GETAC, 7036 /POINTER TO GETAC SUBROUTINE
2004 xxxx FPNUM, xxxx /FP CONSTANT

2005 XXXX XXXX

The above routine transfers the contents of locations 2004 and 2005 into the
FAC and then halts. The first instruction, JMS @ GETAC jumps to the subroutine
pointed to by GETAC, location 2003, causing an effective JMS to 7036. The subrou-
tine at 7036 examines the location following the JMS call, location 2001, and finds
the number 2004, It takes this number as the address of the first word to be moved
to the FAC. It then increments this address internally and transfers the contents of
2005 to the second word of the FAC. Following this second transfer it exits to the
second location following the subroutine call, location 2002, where the computer
halts. At this point locations 7572 and 7573 (the actual FAC addresses) contain the
same numbers as 2004 and 2005. Neither the actual number nor the pointer to it
are changed by this operation, The previous contents of the FAC are destroyed,

A similar subroutine, GETAR, loads the floating argument in an exactly analo-
gous way. A third routine, FACFAR, transfers the contents of the FAC to the FAR
directly, FACFAR requires no calling addresses since its action is entirely internal
to the FPP, There is no analogous routine to transfer from the FAR to the FAC, since
the FAR is generally destroyed by the arithmetic operation, leaving valid information
only in the FAC.

Depositing of floating point numbers in memory following such calculations is
accomplished in an entirely analogous manner, with the address of the first word
given in the location following the call to PUTAC. Thus one can store the contents
of the FAC in the two word location TEMP by simply calling:

JMS @ PUTAC /CALL THE PUTAC ROUTINE

TEMP /ADDRESS OF LOCATION 1 OF TEMP
STOP

TEMP, 4 /ACTUAL LOCATION TEMP
9

PUTAC, 7050

It should be emphasized at this point that the surest way to programming disas-
ter is to neglect to specify two locations for each floating point constant to be used by
the program,

A simple routine for adding the contents of floating point numbers ANUM and
BNUM is given below. The result is stored in ANUM following the operation,

JMS @ GETAC /LOAD THE FAC WITH ANUM

ANUM /ADDRESS OF ANUM
JMS @ GETAR /LOAD THE FAR WITH BNUM
BNUM /ADDRESS OF BNUM

JMS @ FADD /PERFORM FP ADDITION
JMS @ PUTAC /STORE IN ANUM

ANUM
STOP /AND STOP

GETAC, 7036 /POINTER TO GETAC

GETAR, 7024 /POINTER TO GETAR

ANUM, xoox /ACTUAL FP NUMBER ANUM
XXXX

BNUM, xoxx /ACTUAL FP NUMBER BNUM
XXXX

PUTAC, 7050

An additional temporary storage register TEM is available for programmer
use, The subroutines FACTEM and TEMFAC move FAC to TEM and vice-versa,
This register must be used with care, since the floating point input routine, FLIP,
and all of the extended functions utilize TEM, The basic arithmetic routines, how-
ever, do not utilize TEM,

All of the data moving routines are summarized below:

GETAC 7036
GETAR 7024
FACFAR 7002
PUTAC 7050
FACTEM 7010
TEMFAC 7016

o0

25 2N N BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN

D. Basic Arithmetic Routines

The following subroutines accomplish basic arithmetic functions:

Subroutine Name Function Subroutine Location
FADD FAC + FAR — FAC 7214
FSUB FAC - FAR — FAC 7255
FMULT FAC x FAR — FAC 7350
FDIV FAC / FAR — FAC 7413
FNEG - FAC FAC 7263

In each case, the result is contained in the FAC. Negation is accomplished by
taking the two's complement of the mantissa. Addition and subtraction are accom-
plished by shifting the FAR or FAC right until the exponents are aligned and then
adding, or negating and adding, Multiplication is accomplished by multiplying the
mantissas together and adding the exponents, and division by dividing the mantissas
and subtracting the exponents. A complete discussion of the algorithms used is
given in Part V.

The FAR is destroyed by all basic arithmetic functions except negation., It
should be noted that the FAR is subtracted from the FAC during subtraction and that
the FAR is the divisor during division, If the exponent becomes too large during addi-
tion or subtraction or if division by zero is attempted, the error flag is set. Exponent
overflow or underflow does not, however, cause a "wrap-around" which would allow
107150 to ever become 10%150 or vice-versa.

E. The Error Flag

Location 7556, called ERRF, is a general purpose error flag., It is set to zero
on the FPP binary tape, and is set to one by various error conditions. The error flag
is never cleared, once set by any routine, It is thus up to the user to zero it at the
beginning of routines and check it at the end of routines, Since ERRF is never re-
zeroed, it is only necessary to check its state occasionally, such as at the end of each
major section of your program rather than after each individual step. The error flag
is set by such conditions as division by zero, exponent overflow, square root or log-
arithm of a negative number, and number out of range.

F, Floating Point Input and Output

In order to allow the programmer to utilize the FPP most efficiently, a pair of
subroutines have been designed to accept data from and output data to the Teletype.
The Floating Point Input routine FLIP will accept data in virtually any format and the
output routine FLOP prints data in scientific notation, with a variable number of digits,
and with a character counter to allow column justification.

1. FLIP

This routine is called by the call JMS @ FLIP, where FLIP actually
points to the input routine, located at 6712, The Teletype is then active, and
will accept and echo all characters typed, until an illegal character is entered.
Exit then occurs, with the terminating character in the AC, and the converted
number stored in the FAC, A carriage return-line feed is not typed by FLIP
and must be provided externally. The FAR is destroyed.

Since the Teletype does not have superscript capability, exponents are
represented by typing E followed by the desired power of ten, Thus, 5E1 rep-
resents 50. Should an exponent larger than 150 be entered, the error flag ERRF
is set = 1 upon exit,

Virtually any format is legal for input, except that spaces may not be
embedded in the number. A space is detected as an illegal character and
causes immediate exit from FLIP, Thus, 5.03E-6 is legal input, but 5. 03 E-6
is not. Other examples of legal input include:

50

050
50,0
0.005E5
500E~1
+50E+0
etc,

Other conditions that cause FLIP to exit include:

(a) a sign anywhere except immediately before the mantissa or
exponent,

(b) two decimal points in the mantissa or one in the exponent,

(¢ asecondE.

The above conditions are not interpreted as errors, however, and the numbers
typed before they occur are converted and stored in the FAC, However, the
terminating character is always in the AC upon exit from FLIP and can be
examined by the calling program. One might require, for example, that the
terminating character be a Return,

A mistake during entry of data to FLIP can be corrected by typing a
Rubout. The typing of a Rubout causes FLIP to echo with a backslash (\) and
zeroes the FAC, The entire number can then be re-entered. FLIP automat-
ically types a backslash and zeroes the FAC if more than 11 significant figures
were entered, The value can then be re-entered.

®» © 7 © © 00 0009 00 SO OOEO "™ OB OCS

Following an FP input, the valid data flag VFLAG (6760) can be checked
for validity of the input. VFLAG is always set to # on entry to FLIP and to 1
if valid data was typed. This enables one to wait for a correct input before
going on to the next program step, For instance if upon entrance to FLIP,
only Q were typed, there would be an immediate exit from FLIP with 321
(ASCII Q) in the AC and VFLAG = 4.

VFLAG can be used in combination with the terminating character to
determine the nature of the data entered. For example, one might wish to read
in a pre-punched paper tape containing floating point numbers with a variable
number of terminating characters between them, such as spaces, carriage re-
turns, line feeds, etc. The following program will read in 10 numbers from
paper tape, store them, and then halt, All illegal characters will be ignored,

MEMA PNTSET /SET BEGINNING OF STORAGE LIST INTO POINTER

ACCM DPNT
MEMA (12 /SET COUNTER TO 10 (BASE 8)
ACCM COUNT
FAGN, JMS @ FLIP /ENTER FLOATING INPUT ROUTINE
MMOZ @ VFLAG /LEGAL INPUT?
JMP FAGN /NO, RE-ENTER SUBROUTINE
JMS @ PUTAC /YES, STORE THE RESULT
DPNT, g /IN LOCATIONS POINTED TO BY THIS POINTER

MPOM DPNT /INCREMENT POINTER TWICE
MPOM DPNT /FOR NEXT FP NUMBER
MMOMZ COUNT /10 DONE YET?

JMP FAGN /NO, GET ANOTHER
STOP /YES, HALT PROCESSOR
PNTSET, 100000
COUNT, #
FLIP, 6712

VFLAG, 6760
PUTAC, 7050

2. FLOP

The floating point output routine FLOP types out the value of the FAC in
scientific notation on the Teletype. If the FAC contained

7572/0002000
7573/1000000

calling JMS @ FLOP

FLOP, 6543

10

would produce on the Teletype: 1.00000E0. Both the FAC and FAR are de-
stroyed by FLOP, FLOP does not type a carriage return or line feed,

The number of significant figures typed out by FLOP is controlled by
the contents of location 6544. In the form the tape is provided, FLOP types
out six significant figures, and location 6544 contains 70006, equivalent to
MNGA (6. To change the number of figures to 3, for example, this location
would be changed to 70003, or MNGA (3,

Since the total number of characters typed by FLOP will vary with the
sign of the exponent and the size of the exponent, a character counter has
been included in the print routine. Each time any part of the FPP prints
a character using the internal subroutine PCHAR, the counter CARCNT
(6775) is incremented, It is up to the user to set and check this counter, In
designing programs using this feature, it should be kept in mind that the max-
imum number of characters which could be produced by FLOP with six signif-
icant figures is 131¢: -n.nnnnnE-nnn,

The following example causes each output from FLOP to be exactly 14
characters wide, The number of significant figures is set to 4.

PFLOP, § /SUBROUTINE ENTRY WITH FAC LOADED
MEMA (16 /14 BASE TEN
ANGM @ CARCNT /SET CHARACTER COUNTER TO -14
JMS @ FLOP
PAGN, MEMZ @ CARCNT /IS CHARACTER COUNTER = #?
ZERZ /NO, SKIP EXIT INSTRUCTION
JMP @ PFLOP /YES, EXIT FROM SUBROUTINE
MEMA (240 /PRINT SPACES TO FILL TO 14
JMS @ PCHAR /PRINT ROUTINE IN FPP INCLUDES CARCNT
/INCREMENT
JMP PAGN /LOOP UNTIL 14 CHARACTERS TYPED
FLOP, 6543

CARCNT, 6775
PCHAR, 6767
*6544
MNGA (4 /SETS 4 SIGNIFICANT FIGURE OUTPUT

3. FIXOP

Data printed in the form n. nnnE-nn are sometimes confusing to read for
particular applications. While it should be recognized that the only way one can
maintain the same number of significant figures in numbers throughout the entire
numerical range handled by FPP-1972, is in scientific notation, it is entirely pos-
sible for numbers whose dynamic range is well known, that a fixed decimal point
output may be desirable,

® & " ®© @ © © © 9 9 06 0 06 ©® 0 OO ™00 ¢

FPP-1972 allows output in a format where the decimal point is always
located in the same place regardless of the size of the number using the rou-
tine FIXOP. The format of this output is specified by the two locations NUMD
and PREDIG, NUMD is the total number of digits to be printed and PREDIG
is the number of digits to be printed before the decimal point, To print out
ten digits, four before the decimal point and six after it, one sets PREDIG to
4 and NUMD to 12g. These numbers remain set in these locations and this
format will be used for all further calls to FIXOP, until these numbers are
specifically changed., The following code would accomplish this:

MEMA (4

ACCM @ PREDIG /SET # BEFORE DECIMAL POINT
MEMA (12

ACCM @ NUMD /SET TOTAL NUMBER OF DIGITS

JMS @ FIXOP /PRINT NUMBER IN FLOATING ACCUMULATOR

PREDIG, 7554
NUMD, 7553
FIXOP, 7524

The fixed point output format suppresses leading zeroes in numbers
smaller than the total space left of the decimal point, and fills with zeroes
to the right to the end of the format space, Numbers whose value is smaller
than that allowed by the format are printed as zero, and numbers whose value
is larger are printed as XXXX, XX, If NUMD is set equal to PREDIG, so that
all the digits are to the left of the decimal point, the decimal point itself is
not printed.

G. Conversion to Floating Point Format

The subroutine FLOAT converts a fixed point integer in the FAC to floating
point format, leaving the converted result in the FAC, FLOAT operates on signed
integers or signed fractions with a fixed binary point. It considers the two locations
FACM and FACML (7573 and 7574) of the expanded FAC to be a 40-bit number with
the binary point located between the two words. The contents of the floating exponent
word FACE (7572) are unimportant on entry, On exit, the result is left in the FAC
in standard floating point format.

Thus, to float a standard 20-bit integer, such as might be found in signal aver-
aged data, one must be sure to zero FACML before calling FLOAT. The following
subroutine accomplishes this flotation, assuming the integer is in the AC on entry:

11

12

FLOTIT, ¢ /SUBROUTINE TO FLOAT 20-BIT INTEGERS

ACCM @ FACM /AC CONTAINED INTEGER ON ENTRY, STORE IN FACM

ZERM @ FACML /ZERO LOW ORDER FAC

JMS @ FLOAT /PERFORM THE FLOAT

JMP @ FLOTIT /AND EXIT FROM THE SUBROUTINE
FACM, 7573
FACML, 7574
FLOAT, 17534

H. Conversion of Floating Point Numbers to Fixed Point

The subroutine FIX converts the floating point number found in FAC to a fixed
point number whose binary point lies between FACM and FACML, Since converting
to integer format requires that the exponent be decremented until it reaches zero,
FACE will be zero upon exit if the FIX was successful. If the FP number was too
large to FIX, FACE will be non-zero, If the number was too small to FIX, FACM-
FACML will be all zeroes if the sign was positive and all ones if the sign was nega-
tive,

I, Exercises

1. Without consulting the FPP-1972 listing, write a routine that
operates in the same fashion as GETAC.

2, Convert the following floating point numbers to integers:
0002000 0000000 0002000
1000000 1400000 1400000
3. For values X, M and B stored in memory, write a program to
calculate
Y=MX+B

and store the result Y in memory.

4, Write a program to calculate and print out Y in the equation:
Y=AX2 +BX +C

for X entered at the Teletype and A, B and C stored in memory.

5. Rewrite problem 4 so that A, B, C and X are entered at the
Teletype. The program should type A=, B=, C= and X= and allow values
to be entered. The calculation should be performed and the resulting Y
printed out,

® 7 ® 000000000 00 0 OGO O "™ O

III. THE EXTENDED FUNCTIONS

A, Summary of the Extended Functions

The Floating Point package may be logically divided into two sections: the
basic arithmetic section, and the extended functions. While the extended functions
utilize the basic arithmetic section, the basic arithmetic section stands by itself,

In fact, if additional program storage space is needed, and the extended functions
are not used by that program, one can overwrite the extended functions section, from
6000 - 6464,

The complete list of extended functions is given below:

Subroutine Name Function Location
FSIN sin(FAC) —— FAC 6000
FCOS cos(FAC) —— FAC 6114
FARCTN arctan(FAC) — FAC 6122
FRIP 1/FAC ——— FAC 6170
FSQRT (FAC)Y/2 —_, FAC 6176
FLOG log(FAC) — FAC 6311
FLN In(FAC) FAC 6317
FSQAR (FAC)2 —— FAC 6333
FEXP 10FAC FAC 6337
FEXPN eFAC ., FACc 6345

In each case, the result of the calculation is placed in the FAC. If the calcula-
tion is not possible, the error flag ERRF is set, and the result is meaningless,

B. Square, Square Root and Reciprocal Functions

FSQAR, FSQRT and FRIP all maintain 30 bits of accuracy. If the squaring of
a number causes exponential overflow, the error flag will be set. If FAC is negative,
the error flag will be set, and the square root is taken of the absolute value of the
FAC. Any attempt to take the reciprocal of zero will also set the error flag, In

this last case the FAC will be meaningless.

C. Sine, Cosine and Arctangent

FSIN, FCOS and FARCTN all maintain at least 26-bit accuracy, The decrease
in accuracy is a result of the successive approximation methods employed. There
are no error conditions,

The argument presented to FSIN and FCOS must be in units of /2 radians.
This is a convenient unit to work with since four such units make a circle. One rep-
resents an angle such as 45° by 0,5, for example. Similarly, FARCTN produces a
result in units of /2 radians,

13

14

D. FLOG, FLOGN, FEXP and FEXPN

FLOG, FLOGN, FEXP and FEXPN all maintain at least 26 bits of accuracy.
An attempt to exponentiate too large a number will cause the error flag to be set,
This number is about 150 for FEXP and about 350 for FEXPN. Any attempt to com-
pute the logarithm of a negative number or of zero will cause the error flag to be
set. No operation is performed on FAC in that case,

E. Extended Functions Programming Example

The extreme ease with which the extended functions can be used to perform
complex calculations is shown by the following example which calculates exp(1/x2).

JMS @ GETAC /GET X FROM MEMORY
X

JMS @ FSQAR /X**

JMS @ FRIP /1/X**2

JMS @ FEXPN /EXP(1/X**2)

STOP

F., Exercises

1, Write a program to calculate the sine of a number typed on the Teletype
in degrees. The result should be printed on the same line.

2, Write a program to evaluate

Y=-Bz: (B2 - 4AC)1/2
2A

where A, B and C are entered at the Teletype. If an illegal operation should occur,
the program should discover it and print a ?.

3. Write a program to calculate and display a semicircle on the oscilloscope,

As each point is calculated, it should be displayed. When the calculation is complete,
the entire semicircle should be displayed.

IVv. ADVANCED PROGRAMMING CONCEPTS

A, Testing the Terminating Character of FLIP

The first illegal character encountered by the floating point input routine causes
an immediate exit, with that ASCII character remaining in the AC, This feature can
be used to determine how the input is to be converted. In the following example, FLIP
is used to accept numbers assumed to be in the units of w/2 radians, The terminating
character is then either S or C, which implies that the program is to compute the sine
or cosine of the entered number, and print it on the Teletype.

START, JMS @ FLIP /ENTER FLOATING INPUT ROUTINE, GET ARG IN

/P1/2 UNITS
A-MZ (323 /WAS TERMINATING CHARACTER "8"?
JMP CTEST /NO, TEST FOR C
JMS @ FSIN /YES, CONVERT TO SINE
OUTPUT, MEMA (2175 /PRINT EQUALS SIGN

JMS @ PCHAR /USING FFP PRINT ROUTINE
JMS @ FLOP /PRINT CONVERTED SINE OR COSINE

JMS CRLF /PRINT CARRIAGE RETURN-LINE FEED; ROUTINE
/NOT SHOWN
JMP START /AND GET NEW INPUT VALUE
CTEST, A-MZ (303 /WAS CHARACTER "C"?
STOP /NO, ERROR, HALT PROCESSOR

JMS @ FCOS /YES, CONVERT TO COSINE
JMP OUTPUT /AND PRINT VALUE ON TTY

FLIP, 6712 /POINTERS TO FLOATING POINT SUBROUTINES
FLOP, 6543
FSIN, 6000
FCOS, 6114

PCHAR, 6767

B. Reading and Printing Characters

The subroutines RCHAR and PCHAR read and print characters on the Teletype,
RCHAR reads a character from the Teletype and then calls PCHAR to print it. It is
therefore not necessary, in general, to write one's own read and print subroutines.
Should the user decide to write similar routines for other memory pages, it is nec-
essary that they have the same timing structure as those in the FPP, RCHAR and
PCHAR are both structured in the sense: wait for the flag and skip, jump back, then
read or print:

Ti, TTYRF P1, TTYPF
JMP T1 JMP P1
RDTTY PRTTY

15

16

It is possible, of course, to write routines in the order:

PRTTY
T2, TTYPF
JMP T2

so that the program waits for the flag to go up before continuing. This second method

can not be used with the FPP, since it would cause timing errors between the user's
subroutine and the FPP subroutine,

C. Multiplication and Division by Two

In fairly long calculations, it becomes apparent that Floating Point calculations
are significantly slower than integer calculations, It is therefore desirable to avoid
the slower method whenever a faster one is available. Multiplication by 2 can be
relatively time consuming if carried out in floating point, for example, but is easily
accomplished in fixed point. Since the exponent of a floating point number is a power
of two, simply incrementing the exponent by 1 will accomplish this multiplication,
However, the exponent occupies the left hand ten bits of an FP word, and therefore
the addition must be done to the exponent alone, by adding 2000g to the first word.
The following sequence of code multiplies the FAC by 2:

MPOA (1777 /GET THE CONSTANT 2000 INTO THE AC
A+MM @ FACE /AND ADD INTO THE EXPONENT

Similarly, division by 2 can be accomplished by subtracting 2000g from FACE:

MPOA (1777
M-AM @ FACE /SUBTRACT 2000 FROM FACE

D. Testing the FAC for Zero

After any operation, one can test the FAC to see if it has become zero by
examining FACM, While the exponent may still have some non-zero value, the man-
tissa will be zero if and only if the FP number is zero, One can therefore test for a
zero input from FLIP by the following code:

FLOOP, JMS@ FLIP /FLOATING INPUT ROUTINE
MEMZ @ FACM /ZERO INPUT?
ZERZ /NO, INPUT OK
JMP FLOOP /YES, GET NEW INPUT

R \.-A!

® ® e

® 7 © 0O 00O %090 000 000" OUCTC

It should be emphasized however, that it is poor programming practice, just
as in high-level languages, to assume that any two floating point numbers will ever
become exactly equal, If one wishes to find out whether a number has reached a value
of 1.9, he cannot assume that subtraction of 1, 9 from that number will produce exactly
zero, The actual result of such a subtraction may well be 10~2 or so, but will be fin-
ite and non-zero. This is simply because the internal representation of some numbers
is not exactly the same in base 2 as in base 10. It also could be because a calculated
number may be somewhat different than a floated integer. The usual procedure in this
case is to subtract the two numbers and determine whether their difference is less
than some tolerance, such as 107,

E. Skipping on Positive or Negative FAC

Since the sign bit of FAC is readily available in bit 19 of FACM, it is quite
possible to perform a simple calculation and then allow the program to branch de-
pending on the sign of the result, If this procedure is to be carried out a number of
times in a program, it is advantageous to use a branching subroutine like that shown
below, The subroutine is entered with FAC and FAR loaded with the two numbers to
be compared. It will produce a skip if the result after subtraction is positive.

SKIP+, @ /ENTER WITH FAC AND FAR LOADED
JMS @ FSUB /PERFORM THE SUBTRACTION
MEMA @ FACM /TEST SIGN OF MANTISSA
EXCT AC19 /IS THE SIGN NEGATIVE?
JMP @ SKIP+ /YES, EXIT WITHOUT SKIPPING
MPOM SKIP+ /NO, INCREMENT EXIT POINTER
JMP @ SKIP+ /AND EXIT WITH SKIP OF NEXT INSTRUCTION

F, Determining of Floating Point Constants

The following constants have been converted into packed two word floating point
format for general use:

Constant Octal Value Decimal Value

T 0005526 3.1415926
1444176

/2 0003526 1,5707963
1444176

e 0005212 2,7182818
1267702

10.0 0010000
1200000

1.0 0002000
1000000

17

18

It is very easy to generate constants in floating point format by using the sub-
routine call instructions contained in Nicobug II. If you wish to find out the floating
point equivalent of 355, 29, for example, you need only call the floating input routine
from Nicobug II and type in the number 355, 29 followed by a Return. Then examina-
tion of the FAC, locations 7572 and 7573 will show the answer in floating point for-
mat, This is illustrated below:

67128355, 29 The command 67128 calls the subroutine FLIP at 6712,
The constant 355, 29 is entered and a Return typed,

7572/0023727 The contents of the FAC, 7572 and 7573, are examined
7573/1306450 using Nicobug II,

Conversely, to determine the decimal value of any floating point number,
simply enter it in the FAC and call the floating output routine using Nicobug II.
Below we determine the value of Floating Point Constant 0024702 - 1246775

7572/0000000 24702 FACE opened and 24702 entered; Line Feed
deposits this number and opens 7573

7573/0000000 1246775 The value of FACM is changed to 1246775, and
Return typed.

65438 6, 78995E2 The subroutine FLOP at 6543 is called, The

contents of the FAC in decimal is 6. 78995 x 102
or 678. 995.

G, Roundoff and Overflow

There has been a great deal of discussion among programmers about roundoff
problems. The magnitude of the problem is illustrated by the following experiment,
Ask several computers in several languages to add pairs of numbers, like .1 and 1,9,
and take the integer part, The answers will undoubtedly differ somewhat from mach-

ine to machine,

This problem arises partly because computers are binary machines, A number
that is simple to represent in decimal, such as 0.1, is impossible to represent exactly
in binary. The internal representation of 0. 1 may be high (or low) by an amount not
greater than one part in one billion in the case of the FPP, The most accurate deci-
mal representation of the internal representation may well be . 099999999, Knowing

this makes it easy to see how the integer part of (1,9 + 0, 1) can be one,

The appearance of a number like . 0999999 is something of a surprise when one
expects 0.1. The FPP solves this problem of aesthetics by adding approximately one
part per billion to a number before printing it. The effect on the sixth digit of the

LB B i I BN BN BN BN BN BX BE BN BN BN BN NN BN BN BN N W

mantissa is almost always invisible. The feature can be removed or the amount of
roundoff changed by varying the roundoff constant shown in the listing,

As mentioned earlier, all arithmetic operations produce 40-bit mantissas
which are truncated to 30 bits. Before truncation these 10 bits are examined. If
the most significant bit is a one, the 30 bit final mantissa is incremented, If this
were not done, all arithmetic operations would produce answers systematically too
small by an amount averaging .5 parts per billion.

H. Exercises

1. Using Nicobug II, calculate the floating point values of the following
numbers:

8.6 x 1073 50002 91

2, Write a program to calculate the integer value of Y in Y = 2X+1 where
X is entered at the Teletype using FLIP, If overflow occurs a ? should be typed.,
Otherwise, the calculated value should be printed out. If an illegal input to FLIP
is detected, a ? should be printed,

3. Write a subroutine to skip on a negative result after subtracting B
from A, The program should be called with A in the FAC and the address of B
in the location following the call:

JMS SKIPM /A IN FAC

B /B FOLLOWS CALL

N /RETURN HERE IF RESULT +
SN /RETURN HERE IF RESULT -

19

20

TABLE I

POINTERS TO FLOATING POINT, 1972

NIC-80/5-7209

FADD
FSUB
FNEG
FMULT
FDpIvV
FIXOP
FLOP
FLIP
PCHAR
RCHAR
GETAC
GETAR
FACFAR
PUTAC
FACTEM
TEMFAC
FLOAT
FIX

FSIN
FCOS
FARCTN
FRIP
FSQRT
FLOG
FLOGN
FEXP
FEXPN
FSQAR

fac + far - fac
fac - far — fac

- fac — fac

fac x far — fac
fac / far — fac
fixed point output
floating output
floating input

prints character

reads & prints char.

x = fac

x — far

fac - far

fac = x

fac - tem

tem —» fac

floats facm-facml
fixes fac

sin(fac) — fac
cos(fac) — fac
arctan(fac) — fac
1/fac - fac
facl/2 - fac
log(fac) — fac
In(fac) — fac

10fac _ fac
efac — fac

fac2 — fac

7214
7255
7263
7350
7413
7524
6543
6712
6767
6761
7036
7024
7002
7050
7010

7016

7466
7473
6000
6114
6122
6170
6176
6311
6317
6337
6345
6333

NUMD
PREDIG
ERRF
CARCNT
VFLAG
FACE
FACM
FARE
FARM

il

]

7553
7554
7556
6775
6760
7572
7573
7575
7576

b
(AN

A1uo opm8 yBnoax se ‘yuepusdsp eyep A(YSTH

08¢ < Jyuown3day

WL qavd juowINdae oxez, SW 0Z SJ1q 92 NIXAA 2 aseq ‘orepusuodxy
0ST < juewniry
WAL avd juowndae oxez SW (Z 8119 92 dXdad ua)} 9seq ‘ojenusuodxy
WAL Yvd Juswndaeoasz Io aArjeSeN Ssw ZT s11q 92 NHO1I 9 eseq ‘myjrae8or
WAL YVd Juswn3Ie ooz J0sA1je8aN sw ZT 8119 92 DOTA uo} 9seq ‘wyjrresory
WAL uvd UON swW T§ §31q 92 (Indjno) suerpea g /u NID¥VA Juoduejpay
WAL uvda SUON sw gT 5314 93 (yndur) suepes g/ S0Dd auIson
WAL ¥vd SUON Sw ZT s1q 9z (ndup) swempea g/ NISI ouls
avd juownSIe ox9z Sw g§° S31q 0¢ draga [eooadroey
WAL yvd juowndye sAljES8ON SW 9 5319 0¢ LYdsd j00a axenbg
v MOTJI940 Jusuodxy sw 8° 8319 0¢ Hvosd axenbg
uvd SUoN sw g’ S¥q 0€ aasd ‘aavda uorjoeIqNg R UOTHPPY
UOISTAIP 0J97,
uvd ‘MOTyI040 JusUOdXy SW §° 839 0€ AIQd ‘LIANJA UOTISTAIQ 7 UoTyeoTIdiyny
J)9A0a3s9(Sa9)SL3oYy SUOTIIPUOD J0JIY «PoadS AOBINOOY syun JTUOWDUIAI uorexadQ

AYVIANAS IDVIIDVd INIOd DNILVOTA

ITI 31dVL

P © v © 0 0 © O 06000 O0O OO INOGO

22

V. ALGORITHMS USED IN THE EXTENDED FUNCTIONS

A, Introduction

This is a description of the algorithms used to compute the extended functions.
Most of the functions are computed by methods described by Cecil Hastings in his
book Approximations for Digital Computers (Princeton University Press, 1955),

B. Square Root

First a guess is made by dividing the exponent of the argument by 2, Then
the guess is refined by setting it equal to:

Old Guess + Argument)

New Guess =(2% Old Guoss

Then the process is repeated 5 times.

C. Sine

First the argument is ""rotated" into the first quadrant by adding or subtracting
ones, The following identities are used:

sine (-x) = -sin(x)
sine (1+x) = sine (1-x)

Then the following Taylor series polynomial is evaluated:

n
sinx = E 02i+1X21+1
i=0

where n = 4, The values for C are

C; = .157080 x 101
C3 = -.645964 x 100
Cs = . 796897 x 10-1
Cy = -. 467377 x 10~2
Cg = .151484 x 10~3

D. Cosine

The cosine function is evaluated with the sine subroutine with the aid of the
identity:

cos(x) = sin (1+x)

E. Arctangent

If the argument is < 1, then

n
arctangentx = », Cgyy,q %2011
i=0
Otherwise:
n .
2i+1
arctangentx =1 -). Cgjy; (%)
i=0

where n= 7,

The values of C are

Cj = 0.636619347
C3 = -0. 212184453
Cs = 0. 126983591
Cy = -0, 08854474
Cg = 0. 061382906
Cy1 = -0. 035503338
Cy3 = 0.013917289
Cy5 = -0, 002580893

F, Logarithm Base ten and Base e

The logarithm to the base 2 is computed and the final result is determined
from the fact that

loge x = (loggoX)(loge2) for base e
logjox = (loggx)(logy¢2) for base ten
The log to base 2 is calculated as follows:

(1) If the argument is < 0, the error flag is set and the logarithm
subroutine exits.

(2) If the argument is <1, the end result is negated.

(3) If the argument is >1, the reciprocal of the argument is taken.

(4) The original exponent is saved and the exponent of FAC is set
tol, Thus 1<FAC<2.

(5) Z is computed from the equation

Z=X-'\/—2_
X+ 2

L B ol BN BN BN BN BN BN BN B BN BN BN BN BN BN BN BN NN 3 |

24

(6) Then
o 2i+1
- i+
Logox = -1/2 + Z Coitq Z
i=0
is computed for n = 2, The values of C are:
C; = .288539 x 10!
Cg = . 961471 x 100
Cs = . 598979 x 100
(7) The exponent is retrieved, converted to a floating number, and

added to FAC,
(8) FAC is negated if necessary and multiplied by the proper constant.

G. Exponentiation, Base ten and Base e

FAC is multiplied by a constant so that the internal base 2 exponentiation
subroutine can be used.

eX = 2Xlog2e for base e
10X = 2Xlogg10 for base ten

If FAC is negative the absolute value is taken and the final answer is the
reciprocal,

Then FAC is separated into a fractional part and an integer part by subtracting
ones, The fractional part, F, is evaluated,

2F
A-F+BFZ .- ¢
D+F2

2Fx 1+

where the constants are:

A = +9, 95459578

B = +0, 03465735903
C = +617. 97226053
D = +87,417497202

Now the integer part is converted into a fixed point number and added to the exponent
of FAC.

..‘.............-----.

OO0 "0 0000000 90000 000 ™ 0 ¢

Section VI, Listing of Basic Arithmetic and Section VII, Listing of
Extended Functions are included as a part of the 1080 Instruction
Manual and are available upon request.

25

March 1972

HARDWARE ARITHMETIC TEST - INSTRUCTIONS FOR USE
NUS-204

Load the binary tape and begin executing at location zero. If all is well, the following
messages should be typed:

TRANSFER OK
BIT-INVERT OK
MULTIPLY OK
DIVIDE OK

If an error occurs, one of the following messages will be typed:

1) TRANSFER FAILED

SOFTWARE XXXXXXX HARDWARE XXXXXXX

This signifies that either a TACMQ or a TMQAC failed in its operation. The
Software # is what the program tried to load into the MQ and the Hardware ¥ is what

came out,

2) BIT-INVERT FAILED v
SOFTWARE XXXXXXX HARDWARE XXXXXXX UNINVERTED XXXXXXX

This signifies an error in the bit interchanges; 19-@, 18-1, etc. The Software
number is the simulated software result, the Hardware number is the hardware result

and the Uninverted number is the initial operand.

3) NO SKIP
The contents of memory location following a MULT or DIVIDE instruction should

be executed. This error message signifies failure of the computer to skip execution of
these memory locations.

4) MULTIPLY FAILED
SOFTWARE XXXXXXX * XXXXXXX = XXXXXXX, XXXXXXX

HARDWARE XXXXXXX * XXXXXXX = XXXXXXX, XXXXXXX

This signifies a failure in the operation of the MULT instruction. If the second
Software operand differs from the Hardware operand it means the hardware failed to
restore it to memory. If the Hardware product is greater than the Software product
by one, then the hardware failed to clear the accumulator prior to multiplication. All

other differences signify other hardware failures.

5) DIVIDE FAILED
SOFTWARE XXXXXXX, XXXXXXX / XXXXXXX = XXXXXXX R XXXXXXX

HARDWARE XXXXXXX, XXXXXXX / XXXXXXX = XXXXXXX R XXXXXXX
This signifies a hardware failure in the DIVIDE instruction.

ASTROTEST - INSTRUCTIONS FOR USE
NUS-248

Abstract

Astrotest is a simple, minimum length program for testing, and diagnosing
faults in core memory,

Loadin

Astrotest starts at location @ and is only 1504 instructions long. The block
of memory to be tested is determined by two memory locations which must

be accessed through the 291.

Location 46 size of block
Location 47 first address of block

Theory of Operation

Each location in the block of memory to be tested is set to a known state. Then
the block of memory is read out and a comparison is made to determine if there
was an error. The states are: 0, 3777777, 1, 2, 10, 20, 40, 100, 200, 400,
1000, 2000, 4000, 10,000, 20,000, 40,000, 100,000, and 200,000 followed by
the compliment of these states. The entire sequence is repeated 40 times after
which the program restarts itself.

If an error is detected, astrotest will print the address, the state the location should
be set to, and the erred state. It does not restart after an error, but rather it

continues from where the error was found.

Submitted By: Jack Kisslinger |
Astrodigit

