Restoring a Nicolet NIC-80 back to life
Dwight K Elvey

In early December of 1999 I saw an interesting item for sale on
eBay. It was a NIC-80 with core memory and floppy disk drive.
I had resently seen a message from Sellam Ismail that he had
gotten a Nicolet computer that was used as a data processor
for a NMR Spectrometer. These use the same basic principle
as the NMRI machines used in medicine. The difference is that
it was used for chemical analysis. He said that he’d also gotten
a number of paper tapes and some documentation. I figured I'd
be able to put the two together and come up with a working
machine.

I won the bid and started to deal with how to get
two large rack mount units shipped out. The fellow I bought
them from, Jay West, another collector, wasn’t sure how to
deal with shipping it to me but after several email messages,
we worked it out. Since this all started around Christmas,

I told him that there was no rush.

Finally I got the unit. By this time I’'d met Sellam several
times and asked about the items he had. I drove to his place
and he dragged out several items. He was willing to loan
out manuals and tapes if I was willing to read the tapes into
an electronic form.

Like many of these older mini designs, the NIC-80 has a
front panel with LED lights and switches. I read the manuals
that Sellam loaned me and found the machine language was
described in a form that was usable to create an assembler.

I had written many assemblers in the past for various processors
so it didn’t take me long to crank out something to make
code.

I toggled in some test code and hit the sequence to run

the code. Nothing happened. Inspecting the first location,

I found that the code was erased. This was strange because

I knew that even to read the values for the display ment
that the value needed to be written back. Core memory is

a distructive read. This ment that the memory was working
because I could display all day long with no problems. I
also noticed the the instruction register, displayed on

the front panel, was not changing. This gave me a starting
point to track down the problem. None of the documents that
I’d gotten from Sellam had any schematics for the processor.
At first this seemed like an impossible task. Inspection

of the boards in the machine showed that each board had the
pins labled with things like MB12 and IR5. It didn’t take
long to figure that MB was memory bus and IR was instruction
register. The instruction register was composed of several
74175's. I tracked the clock back to the failing part, a
7474 .

I was now up and running code. It didn’t take long before
I had a simple echo program working with the serial interface.
I found that one of the chunks of core was occationally losing
one bit. This was in a bad location so T swapped it with
one of the other blocks that I shouldn’t need until later.
I've since found the problem of a broken wire.

Nicolet had a program to read paper tapes the one could
toggle in to get code loaded. This program was called
"Nicoloaden" (I almost learned this by heart). Althdugh,
it is inteneded to stay resident, the thing that doesn’t
work right always seems to be the thing that needs that
space. Working with core is great. You can put in an experiment
one night and find it still there several nights later.

I didn’t have a serial tape reader. Sellam loaned me a couple
of readers that one was suppose to work with the NIC-80.

I already had a reader and since I needed to recover data from

tapes for Sellam, I desided to use the parallel reader I
had. I threw together a program that used the parallel port
on my lap top as an input port to read tapes. I was now
able to read the tapes into a DOS file and later transfer
them through the serial port with another program I wrote.

I loaded a few programs and they ran well. I still haven't
tackled the floppy drive. The manuals that I had described
a simple disk OS called DEMON II. This was designed to run
a Diablo removable platter drive. I had a floppy drive so
there were a number of potential differences. The manual
said that to run the floppy, I needed DEMONF. I looked
at every tape and could only find copies of DEMON II.

Using a quickly thrown together disassembler, I started
looking into how the DEMON II worked. The manual also had
a number of examples, both talking directly to disk and
using their low level drivers. The fundimental data block size for
the' hard drive was a track of 3000 octal words. The word
size on this mini is 20 bits. Doing some quick calculations,
knowing that the drive, a SA900, was similar to a standard
SA800, I knew that I could get a maximum of 4000 octal words
on a floppy track. There were going to be diferences.

I needed to write the low end drivers to work with the
floppy disk interface. This being an early mini, they
didn’t use some nice floppy interface chip, the disk interface
was composed of 4 cards with TTL. The only way I was going
to figure it out would be to trace the circuits and see
how the various signal to the floppy were generated. I started
tracing circuits into schematics. I expected that they would
make registers that were similar to the hard drive. As it
turned out, they were only slightly similar.

While debugging the floppy coding, I found a couple of
other hardware problems. An old leaky tantilum capacitor
that was being used to find the index was causing troubles.
Later I found that I had a data pattern issue that turned
out to me line termination on the home made cable I used
to connect the processor to the floppy drive.

The writing of code had a few problems. While looking at the
hardware, I determined that it expected 32 hard sectored disk
and that it split the tack into two 2000 octal work blocks.
This ment a certain incompatability with the hard drive
software. I also found that although it was hard sectored,
it expected some kind of tack address at the beginning of
each track. This set me back about two weeks. I finally
found that what it wanted was the track number written,
bit reversed in the MSB’s of the first word on that track.

I now looked at compatibility between the DEMON II and
what I thought DEMONF should look like. I desided to keep
the changes to a minimum and only write a low level driver
that would work as much like the hard drive as possible.

This wasn’t an easy task because the Interface was just enough
different that the code took a little more space. The code
that they had written looked pretty good and I wasn’t

sure if I could cram more function into the same space

and still keep entry vectors and public variables in the

same place. Soon, I found places that their code could be
improved. A word here and a word there. Soon, I had not

only found space for my 4 extra words but 2 spares as well.

I wrote some code to patch the original DEMON II into my
version of DEMONF. It required a complete overlay of the
low level driver and some sixty patches to the code that
called it. This was because the block select word was slightly
different and the basic block size was different as well.

A couple of days of debugging on the system and I now had
the basic DEMONF running. I now have restored a rare old
computer back to a level that it can be used to execute

code and use the original mass storage system. It has been
a fun projected and doing this kind of thing is why I
bought the machine in the first place.

I learned that the machine is much rarer than I'd realized.
As far as I know, there is only one other still in existance
and that is the one Sellam has. I have learned a lot about
mini computers of this era and I believe I have made a
contribution to keeping the history and hardware of this
unique machine alive. There are a lot of other things
that I left out of the story but it was long enough as
it is. '

FLOPPY DISK EXECUTIVE MONITOR
as Reconstructed by Dwight K Elvey
June 10, 2000

I. Description of Hardware

The floppy system is similar to the Nicolet 294 disk system.

It uses 8 inch 32 hard sectored disk. The controller partitions

each track into two sectors of 2000 octal (1024). This is the first
difference between the floppy and hard drive systems. The hard

drive system has 3000 octal (1536) per track as a single block.
Like the hard drive system DEMONF allocates in the minimum block

size of 2000 octal instead of 3000 octal. The floppy drive has

a total of 115 octal (77) tracks. Since there are two blocks allocated
per track, there are 232 octal (154) total blocks. In the DEMONF
system, 5 words are used for each directory entry (the same as
used in DEMON II). This means that the entire floppys directory

can still fit within a single block. In the DEMON II, the directory
is overlayed at 3000 octal when the DEMON is started from the disk
head (loaded at 7600 octal). In DEMONF, the address is moved to
4000 octal. This has implications for accessing the directory directly
put should be transparent to most code. By moving the directory
location, the system useage of the first 20 octal floppy blocks

can be kept the same as the hard drive. This helps to minimize the
differences between the two systems.

Because of the differences between the controllers used in the

hard and floppy drives, the selection of unit number and also the
exact nature of reading and writing are slightly different. In the
floppy drive system, drives are selected with 1000 octal for drive

1 and 2000 octal for drive 2. When selecting blocks to read or

write, they are selected by combining the block number with the

unit select, similar to the hard drive. The other difference is that
besides setting the accumulator to 1 before doing a write, one
must also mask in the bit pattern 400 octal to the unit/block

word.

IT. Introduction to Demonology
The floppy DEMONF is the same as DEMON II. The head resides at

7600 - 7777, and can be restarted by setting the switches to 7600,
load PC/execute then continue/execute.

A. Loading the DEMONF
Refer to DEMON II manual.

Basic Commands
Refer to DEMON II manual.

Disk Error Messages
Refer to DEMON II manual.

System Start-Up and Shutdown
Refer to DEMON II manual.

DEMONF Bootstrap
This is similar to that that is described in the DEMON II manual.
The code itself is different. If the system does not boot when started
at 7600, it will be necessary to try to restart from the floppy. The
following code will restart, using the copy of the disk head on
the floppy. If this doesn’t work it will be necessary to rebuild the
system as described in section II.A.

This is the minimum code to restart DEMONF:

s.A. 7566 111008) 1000 #VAL A =M N

m O 0 w

756 4631 LTRACK
7584 44632 FPSTAT

7570 2010 10 #VAL ?0 =A&M
757% 2162000 2?0 =0

7572 15 7567 JMP

7573 46634 FPRDF

7574 157% 7573 JMP

7576 2405772 7772 ADDR M =A
757§ 2705576 7575 ADDR M =M-1
7507 157% 7573 JMP

F. Initializing Additional Disk Cartridges

Other than the use of 32 hard sectored 8 inch disk, the procedures
for initializing the disk are similar to the DEMON II. The exception
is that it is necessary to pre-format the floppies before using SYSGEN.
Format Process:

1. Use RUN FORMAT to start the format process. It will stop at PC=1

and wait for you to install the new floppy. Note: FORMAT
can be loaded with Nico-Loadeon at 0-130;0
Place the new floppy in the drive A, with write tag attached.
Press the reset button on the front of the drive.
Do continue/execute.
When the drive activity stops, press the reset button on the
front of the drive
Reinstall the original system disk.
Do continue/execute.

<O U w o

From this point, you can now run SYSGEN as stated in the DEMON II
manual. If the new disk is to have SYSGEN loaded, it is a good idea
to move FORMAT to the new disk as well.

G. Moving Files Between Disk

One can use DIR :F to determine address, size and start of files.
Use the LOAD command to move the file to memory. One can then install
the new floppy and mount the new disk by executing at
7600. Once this is done, use the STOre command to tranfer onto the

new floppy.

ITTI. Programming The Floppy Drive .
The controller is somewhat similar to the hard drive. The major

exception is that a write must be indicated by the write select bit
being set in the LTRACK, even though there is a separate instruction
to do the write and read.

Octal Code Instruction Meaning

4631 LTRACK Load Track address from AC
44632 FPSTAT Read Floppy controller status
46634 FPRDF Read data word with skip

6634 FPWRF Write data word with skip

Note LTRACK difference with FPWRF

LTRACK Bit Map:

7 6 5 4 3 2 1 0

9 18 17 16 15 14 13 12 11 10
Block Address 0 - 231

4

R
e
C
a
1

ND G e-R O
R ORI =28 2 o Ao}

1
F
o]
r
m
a
t

THWO tP-K S o

There are two blocks per track so bits 1 thru 7 select the
track and bit 0 selects the block within that track. The controller
compares the value from bits 1 thru 7 as the track number desired.
If there is a mismatch, it automatically steps to the desired
track. When ready to transfer data, it sets the Data Ready bit in the

FPSTAT returned value.
When the Format bit is set, the controller ignores any value

\]

read from the disk and preforms a forward step equal to the value
in bits 1 thru 7. Normal formating steps by 1. The first value
written on the track should be the track number, written bit reversed
in Bits 19 thru 13. This is the only part of the disk that needs to
be initialize for write. Read do read quire that data be continued
for both sectors worth of data.

Recal bit causes the controller to seek track zero. Success
is indicated by the track 0 bit in the FPSTAT returned value.

FPSTAT Bit Map:
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

<oapowunBS e AW
oONQM RN
HOoORKEAQAQALO DO

There are fewer status bit to worry about in the floppy controller.
Track0 is only active while the head is loaded. After that the status
is lost so one needs to read the status shortly after the Recal is
executed.

IV. Programming with DEMONF Head
Programming is similar to DEMON II except that one of the drive

bits must be set instead of one of the Unit bits. As an_example,
the hard drive 1000020 would address disk block 20 octal. In
the floppy, it would be 1020. The minimum block size is 2000
octal instead of 3000 octal. Otherwise the calling conventions
are the same as DEMON II. Programs Written for the original DEMONF
will require some modification as well since the calling vector is
7613 instad of 7612 for new DEMONF. ErrorFlag is 7704 for new DEMONF.

V. Programming Using the Directory Function (DIRFUNC)
Refer to the DEMON II manual. The exception is that
only 4000 to 7577 is swapped for the floppy instead
of the hard drives 3000 to 7577. This effects some
programs that were written for the hard drive.

VI.

Refer to the DEMON II manual. Also refer to the listing
FLOPPY.SEQ and FLOPPY.LST

FLOAD ASMNS8O

\ DEBUG PFLABEL
OCTAL

MAIN

7565 ORG
LABEL BOOTFLOPPY
1000 #VAL A =M
LTRACK
LABEL STATWAIT
FPSTAT
10 #VAL 2?0 =A&M
?0 =0
STATWAIT JMP
LABEL RDLOOP
FPRDF
RDLOOP JMP
LABEL RDADDR
7772 ADDR M =A

RDADDR ADDR M =M-1

RDLOOP JMP

comment :

1
1

11100
4631

7565
7566

7567 44632
7570 2010
7571 2162000 ?
7572 1567
7573 46634 4
7574 1573
7575 2405772
7576 2705575
7577 1573

New boot strap for gg
00

IOP

0 =0
7567
I0P
7573
7772
7575
7573

Demon/f

#VAL A =M

23 IO

2 IOP ZAC 23 IO
10 #VAL 20

=A&M

JMP

FLAG ZAC 23 IO
JMP
ADDR M =
ADDR M =M-1
JMP

Original boot strap for DemonIlI

7566 2111566 7566 ADDR A =M

7567 4546 6 IOP 14 IO

7570 44541 1 IOP ZAC 14 IO

7571 2036 36 #$VAL ?0 =A&M

7572 1570 7570 JMP

7573 46526 6 IOP FLAG ZAC 12 IO

7574 1573 7573 JMP

7575 2405772 7772 ADDR M =A

7576 2705575 7575 ADDR M =M-1

7577 1573 7573 JMP
comment ;

SAVECODE BOOTFLP.BIN

NCRNT

BOOTFLOPPY NCRNT BOOTFLOPPY -

empty fload disn80
rb BOOTFLP

pfile BOOTFLP.1lst
print dis

\ MKSYS.SEQ Make entire floppy system

\ This file combines the parts of demonx.bin

\ with newer files and makes patches to original
\ binary

fload disn80
CREATE sBuf BufZ ALLOT

Buf->sBuf
Buf sBuf BufZ CMOVE ;

sBuf->Buf
sBuf Buf BufZ CMOVE ;

S! (dval Addr -)
3 * gsBuf +

SWAP OVER C!

1+ !

Se (Addr - dval)
3 * gBuf +

DUP 1+ @

SWAP Ce ;

NMove (From To Count -)
0 DO
DUP>R
OVER Ne
R> S!
$00010001. D+
LLOOP 2DROP ;

-NMove (From To Count -)
0 DO
DUP>R
OVER Ne
R> S!
1- SWAP 1+ SWAP
LOOP 2DROP ;

0 VALUE DemonOffset
0 VALUE LoadOffset

sPatch (dShouldBe dWas Addr -)

LoadOffset -

DemonOffset + DUP>R

S@ D- OR

ABORT" Patch not matched"
R> S! ;

xpatch .s cr
LoadOffset - ‘
DemonOffset + dup . DUP>R
S@ 2dup d. D- OR cr .s key drop
ABORT" Patch not matched"
R> St ;

OCTAL
ReadBuf DEMONX
Buf->sBuf

\ sysgen
0 DemonOffset
0 LoadOffset

\ 5220. 0. 4211 sPatch \ text operation

1000. 100000. 3 sPatch
1004. 100004. 23 sPatch
1005. 100005. 30 sPatch
1006. 100006. 35 sPatch
1007. 100007. 42 sPatch
1010. 100010. 47 sPatch
1011. 100011. 54 sPatch
1012. 100012. 61 sPatch
1003. 100003. 66 sPatch
1003. 100003. 74 sPatch
2000. 3000. 67 sPatch
2000. 3000. 75 sPatch
1014. 100014. 101 sPatch
1006. 100006. 106 sPatch
102000. 103000. 70 sPatch
102000. 103000. 76 sPatch
4000. 6000. 102 sPatch

ReadBuf SysGen
125 125 137 NMove

\ BootStrap (MonHead Backwards)

ReadBuf Floppy
7600 2172 173 -NMove

\ Key Board Monitor
2200 =: DemonOffset
6000 LoadOffset
1007. 100007. 6323 sPatch
1005. 100005. 7133 sPatch
2000. 3000. 7551 sPatch
4000. 3000. 7552 sPatch
46634. 46526. 7115 sPatch
2001630. 2001627. 7127 sPatch
3000. 1700000. 6763 sPatch \ mask drive only

110002. 110005. 7277 sPatch \ When 2 drives set to 110003.
\ 5220. 221. 6661 sPatch \ debug stop
\ 5220. 2103427. 6662 sPatch \ debug stop

\ Paper tape loader
ReadBuf FBINLDR
7600 4000 16 NMove \ Just the patched code

\ MonitorHead
ReadBuf Floppy
7600 4200 160 NMove

0 DemonOffset
0 =: LoadOffset
\ 5220. 0. 4211 spatch \ test code

\ DirFunc

4400 =: DemonOffset
7000 =: LoadOffset
2000. 3000. 7020 sPatch
4000. 3000. 7021 sPatch
1010. 100010. 7175 sPatch
2000. 3000. 7551 sPatch
4000. 3000. 7552 sPatch
4004. 3004. 7555 sPatch
2000. 3000. 7247 sPatch
2000. 3000. 7456 sPatch

1000. 100000. 7044 sPatch
330232. 330625. 7165 sPatch
2000. 200000. 7045 sPatch
0. 400000. 7046 sPatch

0. 1000000. 7047 sPatch
\ test stops ‘

\ 5220. 2162000. 7005 sPatch
\ 5220. 1034. 7553 sPatch

\ DirLst

5200 =: DemonOffset

7200 =: LoadOffset

2000. 3000. 7350 sPatch

4000. 3000. 7351 sPatch

110212. 110605. 7353 sPatch \ used by kill

\ GenIO
5600 =: DemonOffset
6000 =: LoadOffset
1007. 100007. 6003 sPatch
1001. 100001. 6263 sPatch
2000. 3000. 6264 sPatch
4000. 3000. 6265 sPatch
2000. 3000. 6365 sPatch
110002. 110005. 6221 sPatch \ make 110003. for two drives

\ IOHandlers
6600 =: DemonOffset
6000 =: LoadOffset
1007. 100007. 6030 sPatch
1000. 100000. 6062 sPatch
2000. 200000. 6063 sPatch
0. 400000. 6064 sPatch
0. 1000000. 6065 sPatch
1001. 100001. 6160 sPatch
2000. 3000. 6161 sPatch
4000. 3000. 6162 sPatch
1002. 100002. 6171 sPatch
4000. 3000. 6173 sPatch
1002. 100002. 6462 sPatch
4000. 3000. 6464 sPatch
1001. 100001. 6470 sPatch
2000. 3000. 6471 sPatch
4000. 3000. 6472 sPatch
1002. 100002. 6771 sPatch
4000. 3000. 6773 sPatch

sBuf ->Buf
WriteBuf DEMONF.bin

empty fload mkpt
octal

\ 0 173 mkpt DEMONF
0 7600 mkpt DEMONF

empty fload disn80 -
rb demonf

pfile demonf.lst

print 0 7600 dis

pclose

R * 7 |z
\Y 7 4 =
W o BAC

RAcY
apc]

i s g

NS
o
[
~N
<
ca
P
[
~
<
(SN
RS
73
o
<
L
o
RS
~N
Ry
o
o
o
-
N
S
<
¢
N
N
<
(¥
©
~+
~
<
[y
(2}
&
v
A
SN

oo - M/ e i - , AQ “ »\
7] 1)) \M_ 20 L2/ 00 Og %a /23

g i
["Oi T 70

g 2 *‘?ﬁw— '

&L..é-—Lé» Il
S \& - v\

N

-l'\ﬂ Ve H“;

_gi—é' i
[J

sed- oo

Y Y-
’v;/ _

ediene
o 3 .

“‘30",07

“dhiebel

.5 N
!
LA e mal & o

L AN

vz

I
| ——
;
i

A\

no—r-o"'—’

J.‘JJJ -L.—J—

-
\#11 e

pslid

/: R
SEPP R

[N

[2 ~

| — e ~
[N]

Disk OS code and system utilities
DEMONF.TAP STORE SYSGEN 0-7577;0
Builds disk OS
GARBAGEF.TAP STORE PACK 6000-6300;6000
Recovers disk fragments
FORMAT.TAP STORE FORMAT 0-100;0
Initalizes new disk before using SYSGEN
BOOTFLP.SEQ toggle in at 7566
Restarts crashed system if disk OK
NCLDN5B.TAP Load by tape boot loader not saved to disk
Nicoloaden Binary Tape Loader

IMP package code
DEDIT1.TAP STORE DSKED 0-4300;0
Part of IMP set
DSKASSMF.TAP STORE ASM 0-6500;0
Part of IMP set
MOVE.A load w/ DSKED funtion FMOVE
‘ Source for part of IMP, assemble to use
MOVE.TAP STORE MOVE 0-1500;0
Partof IMP set
DLUWDA.TAP STORE LOADER 100000-101500;100000

BASIC files and programs

BASICF.TAP STORE BASIC 0-1777;0
Main BASIC to RUN

BASIC1F.TAP STORE BASICl 0-7677
Part of Basic

BASIC2F.TAP STORE BASIC2 102000-107777
Part of Basic

BASDIRF.TAP STORE BASDIR 100500-101677
Part of Basic

TREK.TAP Use ASCIILOAD in BASIC to load, use NEW
BASIC program to kill the Klingons

Misc Programs
BJACKF.TAP STORE BJACK 0-5200;0
Black Jack Program

/ DISK MOVE PROGRAM
*0
IOSTRT, JMS SAVE /SAVE CORE
ZERA
™S @ ZDISK /READ CD IN .
11 / MODIFIED FOR FLOPPY 191
1000 /WC
6000 /BUFFER
ZERM @ ZDEVDIR
JMS @ A6000 /ENTER CD
ATABPNT, TABPNT /ADDR OF I/O TABE
AOPTPNT, OPTPNT /ADDR OF OPTION TABLE
0 /NO ASSUMED EXTENSION
MEMA ATABPNT
ACCM ATEMP /LET'S FIND NUMBER OF FILES
ZERM NINPUT
IINC, MPOZ @ ATEMP
ZERZ
JMP INC10 /DONE
MPOM NINPUT /BUMP NUMBER OF FILES
MEMA (3
A+MM ATEMP
JMP IINC
ZDISK, 7612
INC10, MPOM ATEMP /START OF OUTPUT FILES
JMS FIRFLE /READ IN FIRST BUFFER
JMS OUTSET /SET UP FOR OUTPUT
MEMA ("C
JMS OPTEST
JMP CORE /CORE IMAGE FILE
MEMA ("B
JMS OPTEST
™P BIN /CONVERT CORE IMAGE TO BINARY
IS FETMC /JUST TRANSFER
JMS PUTC
JMP #-2

/CORE IMAGE FILE
CORE, MMOZ NINPUT
JMP TOOCOR /MORE THAN 1
COR100, MEMA @ DBPNT /GET A WORD
ACCM @ OUTPNT /STORE IT
MPOM DBPNT
MPOM OUTPNT
MMOMZ IARG2
JMP COR100 /GO AGAIN
MEMZ DEVEND
JMP COR200 /END OF FILE FLAG SSET
JMS OUTTRN /SSTO FILE
JMS IOTRN /GET NEW ONE
JMS OTSPNT /SET UP OUTPUT POINTERS
JMP COR100
COR200, MEMA IARG2A /REMAINDER
ACCM OARG2
M-AA C3000
A+MA TOTCNT /MANIPULATE TOTAL COUNT
JMS OUTTRN
JMP CLS300 /CLOSE FILE

/SAVE 3000-7577
SAVE, 0
IEA ONMEA
uMS DISTRN
JMP @ SAVE
/RESTORE 3000-7577

STOP /IMPOSSIBLE RETURN
JMS RESTORE /RETURN CORE
ZERAM @ ZERRFLG /CLEAR ERROR FLAG
MEMA @ ZOARG2 /GET WORD COUNT
7CT AC1l9 ExcT
GA /TAKE ABSOLUTE VALUE IF MINUS AM&/
ACCM EMPCNT
MEMA @ ZOARG1 /STARTING TRACK
ACCM CLSTRK
ACCM OARG3
ZERM @ ZDEVDIR
ZERM TOTCNT
MEMA C3000
ACCM OARG2
OUTS30, JMS OTSPNT /SET UP OUTPUT POINTERS
JMP @ OUTSET
OUTS10, MONM POUTFG /SET PAPER TAPE FLAG
MONM FIRFLG
JMP OUTS30-2

/SET UP FOR INPUT TRANSFER
DEVSET, 0
MEMA @ LSTADD /DEVICE
EXCT MOAC
JMP CLSFLE
ACCM IARG1 /DEVICE
A-MA (5
SKIP AC19
JMP DEVDPT /SET UP FOR DPAPER TAPE DEVICE
MEMA ("H
JMS OPTEST
JMS TRKCAL /FILE > THAN 50 TRACKS
‘°0M LSTADD M Piom
iMA @ LSTADD MeMA
ACCM IARG3 /STARTING TRACK
MPOM LSTADD
MEMA @ LSTADD /WORD COUNT
ACCM IARG2A
MPOM LSTADD /BUMP TO NEXT ENTRY
/SET UP RETURN ROUTIES FOR DISK
MEMA (HARDER- IOSTRT
ACCM ERRARG
MEMA CBUMP
ACCM ERRARG+1
ZERM DEVEND /CLEAR END OF FILE FLAG
JMP @ DEVSET
/SET UP FOR PAPER TAPE DEVICES
DEVPT, MEMA (3
A+MM LSTADD
MEMA (364
ACCM @ Q6333 /MAKE SURE IT INITIALIZES
ACCM @ Q6354
ZERM DEVEND .
MEMA DPFST /LARGE EMPTY SPACE
ACCM IARG2A
MEMA (IOTT10-IOSTRT /SET UP RETURN FOR PAPER TAPE
ACCM ERRARG
MEMA (IOTT20- IOSTRT
ACCM ERRARG+1
JMP @ DEVSET
/FPROR RETURN FOR IOTRN PAPER TAPE DEVICE (OUT OF TAPE)
T 0, ZERM @ ZERRFLG IOTTI0
MONM DEVEND /SET END OF DEVICE FLAG
JMP ERRARG+2
/NORMAL RETURN

JMS @ ZDISK
1012 / MODIFIED FOR FLOPPY
1000
6000 y W A
" "MA NOP /LOOK IN CORE

CM @ PIN ACLM 2
JMP @ IOFTCH

/CALL IN DIRFUN

DIRIN, O
JMS SAVE
ZERA

JMS @ ZDISK

1007 / MODIFIED FOR FLOPPY
600

7000

JMP @ DIRIN

/CLOSE OUTPUT FILE
CLSFLE, MEMZ POUTFG /DON’T CLOSE PAPER TAPE
JMP CLSPT /FINISH OUT WHATEVER
JMS FINBUF /FILL BUFFER WITH ZEROS
CLS300, MEMA CLSTRK /CLOSE FILE
ACCM @ ZOARG1
MEMA TOTCNT /TOTAL NUMBER OF WORDS
ACCM @ ZOARG2
MEMA DPFST /BUFFER ADDRESS
ACCM @ ZOARG3
MEMA Y7600
ACCM @ ZSYSTRT
MEMA @ ATEMP /DEVICE
ACCM CLS100
"™OMA ATEMP /ADDRESS OF FILENAME A4FNWWA‘
.CM CLS200 ACCHW
ZERM @ ZDEVDIR
JMS DIRIN
JMS @ ZDIRFUN /DO IT
CLS100, 0 /DEVICE
1 /CLOSE
CLS200, 0 /POINTER TO FILENAME
JMP NOROOM
JMS RESTORE /RESTORE CORE
MEMA (3
A+MM ATEMP /FOR NEXT DEVICE
JMP IOSTRT
CLSPT, ZERA /PUT A ZERO
JMS PUTC
MEMA OUTCNT
M-AA C3000 /HOW MANY ARE THERE
ACCMZ OARG2
JMS OUTTRN /OUTPUT LAST BUFFER
MEMA (4
A+MM ATEMP /BUMP TO NEXT ENTRY
JMP IOSTRT

/FINISH BUFFER
FINBUF, O
MNGA OUTCNT
A+MA C3000 /# OF LOCATIONS LEFT
EXCT ZAC
™P@ FINBUF
‘RA Z ERA-
uMS PUTC
JMP FINBUF+1

MPOM TRK100
TACMQ /CONVERT TO WORDS
MULT
2000 / MODIFIED FOR FLOPPY WAS 3000
"TIP ZAC
.P NOROOM
TMQAC
ACCM @ TRK100 /REALISTIC WORD COUNT
JMS RESTORE
JMP @ TRKCAL
/FETCH CHAR ROUTINE
FETMC, O
MEMA BCPNT /CHAR ROUTINE POINTER
A+MA CROUT
FET100, ACCM FETADD /CALCULATE ADDRESS OF ROUTINE
MEMA @ FETADD /GET ADDRESS OF ROUTINE
ACCM FETADD
MEMA PUT300
JMP @ FETADD
CROUT, CRLST
CRLST, CHARO
CHAR1
CHAR2
CHAR3
CHAR4
CHARO, MEMA @ DBPNT /GET WORD FRON DISK BUFFER
LLSH 10
JMP FCHEK /SEE IF FORM FEED
CHAR1, MEMA @ DBPNT
RISH 4
JMP FCHEK
CHAR2, MEMA @ DBPNT
"NDA (17 /MASK FIRST PART
SH 4
ACCM FETADD /TEMP STORAGE
MPOM DBPNT /ACCESS NEXT BUFFER WORD
MEMA @ DBPNT
LLSH 4
ANDA (17
A+MA FETADD
JMP FCHEK /CHECK FOR FORM FEED
CHAR3, MEMA @ DBPNT
RISH 10
JMP FCHEK
CHAR4, MEMA @ DBPNT
MPOM DBPNT /ACCESS NEXT WORD
MONM BCPNT
FCHEK, ANDA (377
ACCM FETADD
NOFORM, MPOMA BCPNT
MEMA DBPNT /DONE?
A-MZ OARG4 /DONE WITH BUFFER?
ZERZ
JMS IOTRN /GET NEW ONE
MEMA FETADD /RETURN WITH CHAR IN AC
JMP @ FETMC

/PUT CHARACTER INTO DISK BUFFER
puTC, 0
CM PUT300 /SCR
~wEMA BCPNTO
A+MA CROUTO
JMP FET100 /LET FETMC DO REST OF WORK

UNTYPE, O

ANDA (77
A-MZ (77
ZERZ
P @ UNPCK /FOUND TERMINATOR
. MA (240
JMS TYPE

MEMA RESTORE
JMP @ UNTYPE

/PRINT A CHAR
TYPE, 0
TTYPF
JMP #-1
PRTTY
JMP @ TYPE

/CRLF

CRLF, O
MEMA (215
JMS TYPE
MEMA (212
JMS TYPE
JMP@ CRLF

/ERROR MESSAGES
HARDER, JMS UNPCK /HARDWARE ERROR
MHARD
JMP @ Y7600 /RETURN TO MONITOR
NOUT, JMS CRLF
JMS UNPCK /NO OUTPUT FILE
MNOUT
P IOSTRT
NC J,OM, JMS UNPCK /NO ROOM ON DISK
MNOROOM
JMP @ Y7600
TOOCOR, JMS CRLF
JMS UNPCK /MORE THAN 1 CORE IMAGE FILE
MTOOCOR
JMP IOSTRT
MTOOCOR, TEXT $MORE THAN ONE CORE IMAGE FILE!%
MHARD, TEXT %HARDWARE ERROR! %
MNOUT, TEXT %$NO OUT PUT FILE?%
MNOROOM, TEXT %$NO ROOM ON DISK!%
/OUTPUT IN BINARY FORMAT
BIN, MMOZ NINPUT
JMP TOOCOR /ONLY ONE CORE IMAGE FILE ALLOWED
ZERM @ ZDEVDIR
JMS DIRIN /WE HAVE TO LOOK UP BUFFER ADDRESS
MEMA ATABPNT
ACCM LEADER
MEMA @ LEADER /GET DEVICE
ACCM FAK100
A-MA (5 /CHECK FOR ILLRGAL INPUT
SKIP AC19
JMP ILLIN /CAN’'T READ CORE IMAGE IN FROM PAPER TAPE
JMS @ ZDIRFUN
FAK100, O /DEVICE
2 /DUMMY SEARCH
ZPNT /ZERO FILE NAME
"CCA /PROBABLY RETURNS HERE
'RM @ ZERRFLG /CLEAR ERROR FLAG
MPOM LEADER /GET STARTING TRACK
MEMA @ LEADER
ACCM @ ZTRCK

JMP @ HBINP

