
/

INTl~ODUCTION

I

GENEBAU MGARLJ ''tt.t<

DIGITAL COJ\l\PUTe:~ -- ep '.
155 S",\N LAZARO AV~'\
SUi~trtV,6\L~, CA 94086

(403) 245·4460
(415) 327-2327

System 2400 is ~ 24-bit general purpose systems oriented
digital computer \Vhich proviues extensive computing
C'.~lpability in a 10\v cost processor of advanced design. It
is ide~lly suited to a \Vide range of digital applications
\.;11.01'0 perform~ncc, 1"0 liabi Ii ty, programming effi ciency ,
and cost effectiveness ~re of prime consideration.

STfu~DARD FEATURES - The basic sytem 2400 central processor
incorporates a number of standard features normally available
only as separately priced options. Included in the list of
standard features are:

- Memory Protection
-Memory Parity
• Priority Interrupt System
• Power Fail Detection
• Real Time Clock
- Cabinet Enclosure

~'lEMORY - The main memory is a 750 nanosecond 24-bi t ferri te core
memory with standard byte parity checking. The basic memory size
of 8192 24-bi t \vords is modularly expandab Ie to 32768 words in
8192 \vord . increments. The 2400 CPU is pre-wired to accept the
maximum memory configuration without additional mainframe hard
Hare.

ADDRESSING All of memory is directly addressab Ie by each
single word memory reference instruction. Programming problems
inherent with paged addressing schemes are eliminated on the
System 2400 computer.

REGISTERS - Four general purpose programmable registers are
provided, three of which may be us ed for indexing. All memory
reference, shift, and input-output instructions may be indexed
using any of the three index registers. .

INSTRUCTIONS - The System 2400 instruction set includes 100
basic conooands organized into s~x instruction classes: Memory
Reference, Immediate, Shift, .Input-Outp.ut, Register-Register~
and Control. Significant features of the instruction set
include:

j

..

•

• llanhvarc ~1111tiply and Divide
• \)ouh.le Prcci.sion Arithmctic
• Sil'!lcd l()-Bi.t Immediate Instructions . 0 .

• V~ll·.i.ahlc Shift Instructions
• Immediate, \Voru, and Double Word Comparsion

Instructions
Conditional Branching Instructions

INPUT-OUTPUT SYSTEM - The input-output system is organized around
a multiple access buss structure that allows direct communication
between two input-output devices, an input-output device and the
main memory, the CPU and an input-output device, or the CPU and
main memory. Buss priority is determined during each memory
cycle resulting in a maximum latency time for high priority dir~ct
memory access input-output requests of 750 nanoseconds. The
input-output system provides for byte or word transfers under
program control and high speed block data transfer under direct
memory access control. The basic input-output system is pre-wired
to accept up to eight programmed I/O (PIO) controllers and up to
five direct memory access (OMA) controllers. Block transfer rates
of up to 32 million bits per second are possible under OMA control.

PRIORITY INTERRUPT SYSTEM - TI1e basic System 2400 processor
accepts up to 255 external interrupt signals. The 'priority
interrupt system provides a fully nested interrupt structure
wi th automatic source identification by hardware. Assignment
of interrupt priorities is flexible and completely independent
of the input-output system. Interrupt priorities may be
reassigned without requiring corresponding modifications to the
input-output addressing structure. The interrupt ~tructure is
specifically organized to facilitiate reentrant interrupt process
ing within a . ~up~rvisory environment.

;

~lE~10RY PROTECTION - Memory protection is a standard sys tern
featu're Hhich permits a program to be restricted within an
area of Irlem'orx as defined by two memory address limi ts . An
atte~pt to write or execute outside of the restricted area
results in a system trap interrupt. The limits defining a
protected area of memory may be altered under program control.
~ .. !emory protection on the Sys tern 2400 computer is primari ly .. ~ ..
intended for use in a supervisory multiprogrammed environment
where memory protection is dynamically activated for each
task . ~t the onse,t of its execution •

RE,\L TDIE CLOCK - The re~l time clock provides a low priori ty
CPU intcrruDt e~ch 16 2/3 mi lliseconds . 1lle cloc1~ ' incorporates
.1 \\'~t~hJog timer ,\rhich generates a system trap interrupt in
case 3 clock ~ in~errupt is not acknowleged within 16 2/3
milliseconds: i

.~

POWEI\ Fj\I[DETECTION - This feature insures orderly system
shutdow~ and iautomatic restart in case of power failure.

PERIPHERALS ;- A complete line of peripheral equipment is
available for the System 2400 computer. Representative
peripheral include:

Keyboar'd Prih"ters - 10 characters per second. Also avai lab Ie
with integraied paper-tape reader at 10 characters per second
and pUl}ch at "10 characters per second.

Car'd Readers ', - .300, 600 and 1000 ' cards per mi nute . Read
SO-column cards in parallel by column, photoelectrically.
Automatic conversion to ASCII.

Line Printers - Fully buffered, 300, 600 and 1000 lines per
minute, with 80 and 132 print positions.

Magnet ic-Tapa Units - .Nine-track: IBt>-1-compatib Ie, 37.5 inches
per second, 800 bytes per inch, 30,000 bytes per second
transfer rate. Seven-track: IBM-compatible, 37.5 inches per
second, 200, 556 and 800 bytes per inch, transfer rates of
7,500, 20,850 and 30,000 characters per second.

Disc Files - Capacity 831,488 to 8,304,880 words per storage
unit; transfer rate of 104,000 words per second; average access
times'between 12.5 and 20 milliseconds.

Paper-Tape Readers and Punches - Readers with speeds of 10 and
500 characters per second. Punches with speeds of 10 and 120
characters per second. Both use eight-level codes.

Analog-To-Digital Converter - Analog-to-digital converters and
multiplexers with sampling rates that exceed 40,000 samples
per second for 12 bit resolution; low-level to high-level.

Digital-To-Analog Converters - l4-bit resolution, low impedance
output, fast settling time, updating rates ,exceed~ng 100,000
channels per second.

Digital Inputs ~ 24-bit contact closure and voltage level
inputs.

•
,

j

D'ia i ta Z Outputs - 24-bi t cont~ct closure and vol tage level
outputs.

F2'Q~!lJSS I nput s - 24-bi t contact closure ~nd ,vol togo level
inputs that generate process or interrupts in response to
external state or level variations.

SOFTWARE - 1\ comprehensive p~ckage of systems oriented
s oftware is ~vailable for the 2400 computer. Representative
soft\vare includes:

Mu Ztip rogr'amming Exec:u"l;iv,e (MULTBX) - MULTEX is a disc
oridnt6d real time oper~ting system designed to support
priority oriented real time processing on tho System 2400
computer. It provides for priori ty scheduling and func
tional support of multiple foreground tasks with concurrent
background batch processing. Tasks may be permanently
resident in memory or read from disc into memory for exe
cution. A mul tiprogrammed mix of such tasks may be active
at any given time with the highest priority task in actual
execution.

~lULTEX provides for automatic task scheduling based upon
the system clock, the occurrence of an interrupt, or by
task request. Interrupt scheduling may be performed in
either direct or deferred mode. Direct interrupt schedu
ling is employed where critical response times are required
and processing is performed at a priority level determined
by hardware. Deferred interrupt scheduling is used where
less critical response times are required and processing
is performed at · a: priority level established by sO,ftware.

~-1ULTEX provid,es comprehensive input-output faci Ii ties at
both the imp l icit and explicit levels which permit full
I /O overlap \ ,j i th computing among separate tasks. Explici t
I/O· is inherently device dependent in nature as contrasted
to Jmplici't · I/O which is device independent by definition.
Implicit' I/O is performed with respect to a system of file
manGl-gement \-Jhich incorporates both disc files and I/O devices.

I

ivlU LTEX provides for background batch processing at , the
lowest system priority level concurrent with foreground
ope~ation. The basic functions provided by the background
system are indicated as follows:

, ,
. '.

Ass i gnment ,of Background I/O Units
Assembly/Compilation
On-line Creation olf Foreground/Background
,Tasks '
Creation of Files

•

•

.. ,.~ I. I

fI ' -

•

...

....

•

·~~~~~~==~--r=--~l~~~~~--------I

J>/tiA-,A-rPP(le55/!tfJP · e~1Jrl-6L- BuS It::;:,

?~2:~SSOR

· 1

AUXILIARY

PROCESSIN
UNIT

,
I

I

8K
~ MEMORY

BLOCK #" I

~~

•

8K
MEMORY

BLOCK # 2

•

~ 8K
MEMORY

LSLOCK #3

• + _ _ ___ t_._)(I
< Y . ' 1

DATA, ADDRESS, ~ JD COi~TROL BOSS

I ! .
i

I I
I I

, . 1 - , __ 1__ ,'_...L. _____ -L-_

PROGRAV. \~ED \ i PROGq:·d\~~,'ED
~ 1 '~P,j;/O:';TP.JT ; lit. -:-ERFACE # I I

---r~

I
i
I

~
I LOW

'I SPE ED'
LEVICE # _1

I '

/

I ~~ p -.) ~ ;' C J "7" P J T I
I ~~ T E q FA C E ** 2 I

1 • I
I ,

LOW

SPEED
DEVICE # 2

J

~.
I PROGRAVI
1

~ INPUT /OJTPLJT I

! ; ~.TERI="ACE ** N !
L-r - _-----'l -- J

! I' :

r-------' . ___ L l
LOW I

• I

SPEE.D
CEV:C E #: \

/

'---- . .

r

I
I

•
*

DIRECT 1
MEMCRY

A(' CESS # I

L __ .

r"1lG H
SPEE :J

DEV '"' E # J \

~.---- . -- -- -~ .

. DIRECT

MEMORY
ACCESS # 2

I-~
HIGH L SPEED

DEVIC,E # 2

•

I ···-1 8K
MEMORY

BLOCK *-4

j I - ~/",

•
,r

DIRECT
MEMORY

C ACCESS # N

+
• I I HIGH
' SPEED

I DEV!CE #N

,I

,/"

Th~ list of b~ckground functions may be extended on-line to
in(:orpor~t~ us~r \vri tt~n background tasks.

;l$0 L-:,,'0~a r - The System 2400 ~ssclllblcr is available in both a
s t and-alone version and ~ version which operates as a MULTEX
background task. 111e assembler proviJ.es the following basic
fcitures.

• User Defined Macro Procedures
• ConJ.i tional Ass 'omb ly Capabi Ii ty
• Fixed and Floating Point Constants
• Absolute and/or Relocatable Object Code

Rea Z Time Fortran - The System 2400 real time Fortran com
piler operates as a MULTEX bac~ground task permi tting fore
ground/background programs to be written in Fortran. The
language exceeds USASI Basic Fortran standards andincor
porates extensive file manipulation statements.

System Generation - The system generation program builds a
version of MULTEX adapted to system configuration requirements.
It operates as a stand-along program and accepts input from a
master file of user specified system definition parameters.

Input-Output Drivers - Stand alone I/O drivers are provided
for all system 2400 peripherals.

Diagnostio Programs - Stand-alone diagnostic programs are
provided which 'permit comprehensive testing of selected
System 2400 hardware components.

. " ... ~... .

•

e ' •

•
. "

if> ;f

INSTRUCTION SET

cuDE
lllEXADECI~lAL) ~lNE~lONIC INSTl~UCTION CYCLnS

ARI'lll~lETI C
/

G4 A Add 2
F4 AD Add Double 3
::>.+ AIA Add .Immediate A 1
35 AIX Add Immediate X 1
36 AIY Add Ilmnediate Y 1
37 AIZ Add Immediate Z 1
BC DM Decrement Memory 3
E4 D Divide 10
GO 1M Increment Memory 3
EC ~1 f'.lultiply 10
20 NEGA Negate A .1
E8 NEGD Negate Double 2
21 NEGX Negate X '1
22 NEGY Negate Y 1
23 NEGZ Negate Z 1
B8 S Subtract 2
F8 SD Subtract Double 3
38 SIA Subtract Immediate A 1
39 SIX Subtract Immediate X 1
3A SlY SUbtra:~ediate Y 1
3B ·S1Z Subtract 1m ediate Z 1

BRANCH . -

90 B Branch 1
14 BE (Branch if Equal 1
18 BG Branch if Greater 1
98 B1 Branch Indirect 2
10 BL Branch if Less 1
54 BNE Branch if Not Equal 1
58 ENG Branch if Not Greater 1

.~,
50 BNL Branch if Not Less 1
5C BNV Branch if No OverflOW I
9C BR Branch and Restore 2
94 BS Branch and Save 2

-,. ~ . .,
Ie BV Branch if Overflow 1

4-1

•

• .. .
INSTI\UCTION SET

CODE
(l{EXADECI~lAL) ~lI'-JEMONIC INSTRUCTION CYCLES

CO~lPARE
'\

70 CPA Compare A 2
FC CPD Compare Doub Ie 3
3C CIA Compare Immediate A -J 1
3D CIX Compare Immediate X 1
3E elY Compare Immediate Y 1
3F CIZ Compare lnunediate Z 1
74 CPX Compare X 2
78 CPY Compare "Jl 2
7C CPZ Compare Z 2

LOGICAL
\I"

I', ~

1\4 N Logical And 2
24 : ~ NIA Logical And Immediate A 1
25 NIX Logical And Immediate X 1
26 NIY Logical And Immediate ·Y 1
27 . • t NIZ Logical And Immediate Z 1 'I
AC " . X Logical Exclusive Or 2 , .. ,

:

2C
' . .

XIA Logical Exclusive Or Immediate A 1
2D

f

XIX Logical Exclusive Or Immediate X 1
2E XIY Logical Exclusive Or Immediate Y 1
2F XIZ Logical Exclusive Or Immediate Z 1 ..
AS ~ a Logical Inclusive Or 2·
28 OIA Logical Inclusive Or Immediate A 1
29 OIX Logical Inclusive Or Immediate X 1
2A OIY Logical Inclusive Or Immediate Y 1

" 2B OIZ Logical
\

Inclusive Or Immediate Z 1

,)

.. SHIFT' ~ ,

C8 '" ;. "'. i SLC Shift Left Closed 2+N/3
CC SLCD Shift Left Closed Double 2+N/3
CO SLL Shift Left Logical 2+N/3
C4 SLLD . Shift Left Logical Double 2+N/3
D8 SRA Shift Right Algebraic 2+N/3 ... ~ f' #

DC SRAD Shift Right Algebraic Double 2+N/.3
DO SRL Shift Right Logical 2+N/3
D4 SRLD Shift Right Logical Double 2+N/3

....

4-2

·.
" .

INSTRUCTION SET

CODE
(HEXADECI~IAL) ~INEMONIC INSTRUCTION CYCLES

' "
TRANSFER

·L

OS ! CAX Copy A To X 1
06 CAY Copy A To Y 1
07 CAZ Copy A To Z 1
09 CXA ' Copy X To A I ,
OA CYA Copy Y To A 1
OB CZA Copy Z To A 1
OD lAX Interchange A and X 1
OE lAY Interchange A and Y 1
OF IAZ Interchange A and Z 1
60 LOA Load A 2
FO LDD Load Double 3

/ 30 LIA Load Inunedi'a te A . 1
31 LIX Load Immediate X 1
-? .:J_ LIY Load Inunediate Y 1
33 LIZ Load Inunediate Z 1
64 LDX Load X 2
68 LOY Load Y 2
6C LDZ Load Z 2
40 STA Store A 2
EO STD Store Double 3
44 STX Store X 2
48 STY Store Y 2
4C STZ Store Z 2

INPUT/OUTPUT

84 RD Read Direct ? 2
80 RS Read Status 2
Be WD Write Direct 2
88 WS Wri te Stat'us 2

MISCELLANEOUS J

04 CV C lear Overflow . 1
02 DSI Disable Interrupts 1 .,,~, r

03 ENI Enable Interrupts 1
AO EX Execute l+INSTR
00 ' HALT Halt 1
01 NOP No Operation 1
08 SV Set Overflow I
OC SVC Supervisor Call 1

4-3

-,

INSTRUCTION FOR~~TS

ri ~e instruction types are used in the dcs 2400 instruction
s et. All instructions occupy a single 24 bit word.

1. ~lcmory l~efcrence Ins tructions

The most commonly used instruction is the memory
reference type instruction. '111cse instructions can
directly aJ"lrcss the entirc memory (0 to 32K words)
\Vi tIl or \vi thout indexing., rille A field in the instruc
tion spccifies a 16 bit signed displacement memory
address. TI1e X field spccifies optional indexing
with the contents of index registers Rx, Ry, or Rz.
1110 effective memory address (actual memory address)
is the sum of the A value with the contents of the
specified index register.

0 5 678 23

OP CODE X xl± A
I

f... /f\ {\
16 bi t" Direct Address

2 bi t, Index Tag

00 No Index
01 (Rx)
10 CRy)
11 (Rz)
,, - . " I

6 bit, Operation Code
, ~

OP CODE' MNEMONIC INSTRUCTION

, " 1011 01XX A ADD
, ', IIll ' OlXX AD ADD DOUBLE
, '. ldO 1 'OO,XX B BRANCH

000'1 01XX BE BRANCH IF EQUAL
.. 0001 10XX BG BRANCH IF GREATER

1001 10XX BI BRANCH INDIRECT . 0001 OO'XX BL BRANCH IF LESS ~

0101 01XX BNE BRANCH IF NOT EQUAL
0101. 10XX BNG BRANCH IF NOT GREATER '
010100XX . I3NL BRANCH IF NOT LESS
010111XX BNV BRANCH IF NO OVERFLOW

. 1001 l1XX BR BRANCH ftJ\JD RESTORE
" 1001 01XX BS BRANCH AND SAVE

0001 11XX BV ' BRANCH IF OVERFLOW
: ',0.111: ' OOXX CPA COMPARE A

1111 llXX CPO COMPARE DOUBLE

" t •

)

.
~· f •

..

· ~ ..

• •

,/

2. Immcdi Jte Ins tructi ons

The immediate instructjons (also called Literal
instructions) use the 1\ field in the instruction
\I/o1'd JS the second operand. '111e first operand is
contained in one of the working registers eRa, Rx,
Ry, or Rz) and the result if saved replaces the
previous contents of the register. The least ,
significant sixteen bits of the instruction becomes
a 24 bit operand when the sign bit (bit 8) is
extended into bits 0 to 7.

0 789 23

I
of> CODE I± A

I ,_f

1
4
16 bi t, Sign Extending

8 bi t, Operation Code

OP CODE MNEMONIC INSTRUCTION

0011 0100 AlA ADD IMMEDIATE A
0011 0101 AIX ADD IMMEDIATE X
0011 0110 AIY ADD IM!\1ED lATE Y
0011 0111 AIZ ADD IMjvlEDIATE Z
0011 1100 CIA COMPARE IMMEDIATE A
0011 1101 CIX COMPARE IMMEDIATE X
0011 1110 CIY COrvlPARE IMMEDIATE Y
0011 1111 CIZ COMPARE I~11\1EDIATE Z
0011 0000 LIA LOAD IMMEDIATE A
0011 0001 LIX LOAD IMMEDIATE X
0011 0010 LIY LOAD IMMEDIATE Y
0011 0011 LIZ LOAD IMMEDIATE Z
0010 0100 NIA LOGICAL AND IMMEDIATE A
0010 0101 :" 'NIX LOGICAL AND IMMEDIATE X
0010 0110 NIY LOGICAL AND IMMEDIATE Y
0010 0111 NIZ LOGICAL AND IMMEDIATE Z
0010 1100 XIA- LOGICAL EXCLUSIVE OR IMMEDIATE A
0010 1101 XIX LOGICAL EXCLUSIVE OR Irv~EDIATE X
0010 1110 . XIY LOGICAL EXCLUSIVE OR IMMEDIATE Y
0010 1111 XIZ LOGICAL EXCLUSIVE OR IMMEDIATE Z
0010 1000 OIA LOGICAL INCLUSIVE OR IMMEDIATE A
0010 '1001 OIX LOGICAL INCLUSIVE OR IMMEDIATE X
0010 loio OIY LOGICAL INCLUSIVE OR IMMEDIATE Y
0010 1011 OIZ LOGICAL INCLUSIVE OR I~~EDIATE Z
0011 1000 SIA SUBTRACT IMMEDIATE A
0011 ,1001 SIX SUBTRACT IMMEDIATE X
0011 1010 SlY SUBTRACT .IMMEDIATE Y
0011 1011 SIZ SUBTRACT IMMEDIATE Z

•

.3. Shift lnstl'uction

Thc shift jnstl'uc.tions pl'ovide for arithmetic and
logic.al manipulation of jnFoJ'lllution contained in the
Ra and l~d registers, The opc:ration code spc:cifies the
register to be shifted and the type of shift operation ·
to be performcd. The number of bit positions to be
shifted ' eN) is specifieu by the sum of the value A
Hith the contents of thc'inuex register specificd by X.
After the shift count is moJifiecl by the index valuc,
only the eight lcast significant bits arc used. The
shift count \.,ri 11 be in the range 0<N<2SS.

0 5

OP CODE

f.I

6 7 S 9

X xl±

r
f
16 bit, Sign

2 bit, Index Tag

00 No Index
01 (Rx)
10 CRy)

· 11 CRz)

23

A
I

Extending

6 bit, Operation Code
~

OP CODE ~WEMONIC INSTRUCTION

1100 10XX
1100 llXX
1100 OOXX
1100 OlXX
1101 10XX
1101 11XX
1101 OOXX
1101 01XX

SLC
SLCD
SLL
SLLD
SRA
SRAD
SRL
SRLD

SHIFT LEFT CLOSED
SHIFT LEFT DOUBLE CLOSED
SHIFT LEFT LOGICAL
SHIFT ·LEFT LOGICAL DOUBLE
SHIFT RIGHT ALGEBRAIC
SHIFT RIGHT ,ALGEBRAIC DOUBLE
SHIFT RIGHT LOGICAL
SHIFT RIGHT LOGICAL DOUBLE

4. l~egistcr-Register ~nd Control Instructions

The rcg.lstcr-rcgister and control instructions usc
only the oper~tion code field. Bits 8-23 in the
instruction are ignoreJ. The register-register
ins tl'ucti ons move i nforma tion between the working
registers. The control instructions control the
CPU ~nd interrupt system status.

a 7 8 23

OP CODE

t
- 8 bit, Operation Code

OP CODE MNEMONIC INSTRUCTION

0000 0101 CAX
0000 0110 CAY
0000 0111 CAZ
0000 1001 CXA
0000 1010 CYA
0000 1011 CZA
0000 1000 CV
0000 0010 DSI
0000 0011 ENI
0000 0000 HALT
0000 110 1 lAX
0000 1110 lAY
0000 1111 IAZ
00 10 0000 '-/ ·NEGA
1110 1000 NEGD
0010 . O~OO 1 NEGX
0010 0010 NEGY
0010 0011 NEGZ
0000 0001 Nap

: ~ . ~. 0000 ,0100 SV . , .

• . !

COPY A TO X
COpy A TO Y
COPY A TO Z
COpy X TO A
COpy Y TO A
COpy Z TO A
CLEAR OVERFLOW
DISABLE INTERRUPTS
ENABLE INTERRUPTS
HALT
INTERCHANGE A ~~D X
INTERCHANGE A ~~D Y
INTERCHANGE A AND Z
NEGATE A '. "
NEGATE DOUBLE
NEGATE X
NEGATE Y
NEGATE Z
NO OPERATION
SET OVERFLOW

\ .

,.

,-
,/

.: . :'.,
. S. Input-Output Ins tructions

The input-output instructions transfer elata, status
anJ control information directly between the Ra
register ~nd the input-output system. Input-output .
device addresses are computed in the same way
effective memory addresses are computed for memory
reference instructions. The device address is the
sum of the value A wi th the contents of the ~specified
index register.

o

I OP CODE

5 6 .7 S

: A

1 i 16 bit, Device Address

2 bit, Index Tag

00 No Index .
01 CRx)
10 . CRy)
11 CRz)

6 bit, Operation Code

OP CODE MNEMONIC INSTRUCTION

1000 OlXX RD
1000 OOXX RS
1000 10XX WS
1000 llXX WD

READ DIRECT ·
READ STATUS
WRITE STATUS
WRITE DIRECT

23

•

------------.. ----------------------~----~-~------~~~~----------~~~------~~~~~
•

DATA rOl~\li\TS

Three types of formats are used to represent numerical data:
(1) Integer, (2) Double Precision, (3) Floating Point.

1. Integer

TIle basic data format is a 24 bit signed 2's
complement binary 'integer.

o 1

S

Sign Bit
o = Positive
1 = Negative

DATA

23

TIle number represented is defined as a binary or
hexadecimal integer, with bit 0 being the most
significant position, and bit 23 the least
significant.

The maximum range of signed integers which may be
represented by a single word is 80000016'::'i'::'7FFFFF16
(decimal:-8388608~i~+8388607). Negative quantities
are expressed in 2's complement form. (The 2's
complement of a number is obtained by inverting each
bit of the binary number and adding one.)

2. Double Precision

Double Precision arithmetic utilizes two machine
words to represent. a 48 bit, signed binary ' integer
with the following format:

o 1

S WORD 1

Sign Bit
o = Positive
1 = Negative

2324 47

WORD 2

.. '
. ', I

•

a

:

,/

Numbers up to 21t 7 may be representcu in this format.
The mini mum r ~mgc is 8000000000001 G':"i':'7FFFFFrFrrrF 1 G

(d e c i l ll ~ll : -1 40737 48834 432 8'::'i~-t: 14073788355237) ·.
Neg;1t i vc clouble precision numbers arc represented in
2 's camp l ~ ,men t form.

The eff ective memory address of a double precision
operand: specifics the audrcss of the most significant
half of the operand. The least significant half is
located at the effective memory address plUS one.

' 0 23

EA ~ ± WORD '1 (MOST SIGNIFICANT)

EA+l~ WORD 2 (LEAST SIGNIFICANT) '

3. Floating Point

TIle floating point format used two machine words to
represent the floating point number.

0 1

Is
Sign Bit

40 Bit

, I r

" I

2324
I

FRACTION
I

Signed Fraction

3940 47

I

EXP+128 10
I

8 Bit
Exponent

TIle 40 bit signed 2'5 complement fraction occupies bits
0-39 and the 8 bit excess 128 exponent occupies bit
40-47. The radix point of the fraction is assumed to be
immediately to the left of the high order fraction digit.

The effective memory address of a floating point operand
specifies the address of the most significant half of
the fraction. The least significant half of the fraction
and the exponent are located at the ef~ective memory ,
address plUS one.

• •

• ,

o 23

/
I EA _)0 ± FRACTION (MOST SIGNIFICANT)

EA+l~ FRACTION ,Exp (LEAST SIGNIFICANT)

c\

•
• ' f

CONTROL PANEL

Controls ~nd Indicators

Address Display - 16 bi t indicator that displays and CPU
address buss. Mlcn the CPU is in the halt mode this indicator
displays thc contents of the program counter.

D~ta Displ~y - 24 bit indicator that displays the CPU data
buss. When the CPU is in the halt mode this indicator displays
the ctintents of the register or memory location selected by
the display control s\"i tches .

Status Display - 8" bit indicator displays the program status.

I If lighted this display indicates that the
interrupt system is ENABLED. '

< If lighted this display indicates that the
algebraic result of the last arithmetic or
logical operation was LESS THAN ZERO.

> If lighted this display indicates that the
algebraic result of the last arithmetic or
logical operation was GREATER THAN ZERO.

If both the < and> indicators are lighted, the
last arithmetic or shift operation resulted in
an ARITHMETIC OVERFLOW.

RUN If lighted this display indicates that the
CPU is in the RUN mode.

ijALT If lighted this display indicates that the
CPU is in the HALT mode.

I/O If lighted this display indicates that an
input or output operation is in progress.

PE If ligh ted this display indicates that a memory
PARITY ERROR has occurred. The occurrence of a
parity error will halt the CPU.

BP

Data Swi tch
address and

"
" .

If ligh ted this display indicates
gram BREAKPOINT is

Register - 24 bi t
data information.

0-
~

set.

swi tch register

5-1

that a pro-

used to enter

I ',

4t •

____________________ --------------------~----~L---------~~-----------------~--~------------4

•
• •

:

l~un - Th i s momentary contact switch places the CPU in the run
l~TOJC. Instruct i on execution starts at the memory address
stored in the program counter.

lial t - This mOl11ent~ry contact s\.,ri tch places the CPU in the halt
mode. Instruction execution stops with the address of the next
i nstruction to be executed stored in the program counter. If
th e CPU is in the h~lt mode, operation of the halt switch will
cause ~ single instruction to be executed each time the switch
i s operated.

l~cset - This momentary contact swi tch resets the CPU and all
input-output control units. This switch is operational only
when the CPU is halted.

IPL - This momentary contact switch initiates an initial pro
gram load operation from a preselected input-output device.
This switch is operational only when the CPU is halted.

Alter PC - This momentary contact switch causes the address set
in bits' 8-23 of the data switch register to be copied into the
program counter ' and displayed in the address display. The con
tents of the memory location addressed by the program counter
will be displayed in the data display.

Increment PC - This momen,tary contact switch causes one to be
added to the contents of the program counter. The new con
tents of the program counter will be displayed in the address
display. The contents of the memory location addressed by
the program counter will be displayed in the data display.

Alter ~1EM - This momentary contact swi tchcauses the data word
set in the data switch register to be copied into the memory
location addressed by the program counter. The new contents
of the memory location will be displayed in the data display. ,

Display MEM - This momentary contact switch causes the con
tents of the memory location addressed by the program counter
to be displayed in the data display.

Alter Ra - This momentary contact switch causes the data word
set in the data switch register to be copied into the 'Ra
register. The new contents of the Ra register will be
displayed in the data display.

Display Ra - This momentary contact switch causes the con
tents of the Ra register to be displayed in the data display.

5-2

.. .

J

r.
•

I
:

/

:\1 tel' Rx - This 11ll)ll1entu.ry contact swi tch causes the data word
~ct in the data s\vi teh register to be cop~cd into the Rx
i'cgister. The new contents of the Rx register will be dis
playeJ in the data display.

Di .splay Rx - This momentary contact switch causes the con
tents of the l~x register to be displayed in the data display.

Al tel' 1<.y This momentary contact switch causes the data word
set in the data switch register to be copied into the Ry
l'cgister. The new contents of the Ry register will be dis
played in the data display.

Display Ry - This momentary contact switch causes the con
tents of the Ry register to be displayed in the data display.

Alter Rz - This momentary contact switch causes the data word
set in the data switchrcgister to be copied into the Rz
rcgister. The new contents of the Rz register will be dis
played in the data display.

Display Rz - This momentary contact switch causes' the con
tents of the Rz register to be displayed in the data display •

. '

~, ..

.. '"' ...

' 5- :3

• •

•

•

•

•

I < > RUN HAL T I/O PE BP AODRESS

() C) C) () () I I () () C) () Cj I ,-. -() () () () () (,) 'J ',-,,' () IJ

DATA

I () () () () F , () () () I I C) c' () () r) ~) (j 1.-) (j () () (j ... ~

0 2 3 4 5 6 7 8 9 ,0 II 12 13 14 15 .6 " (18 19

~ ~ ~ ~ ~ ~ ~~ ~ ~ Q ~ ~~ ~ ~ ~ '-~

~~ Icr' 'tj

AL TER I (%, (r) (x) (~) f.~) ! ALTER A- T PC SE.. T BP

«.~ ~,
_~ I ~

DISPLAY I I DISPLAY I ~C t C Ct.F~ BP

---------------. c=========------~--------------~--------~==

:;~ des 2400

CONTROL PANEL

, -('

(;
.'

~
c.;, \,J

I;':::;~

\" \ '
~ ~

RST

ij)
IPL

r •

" '

ASSE~mLY LANGUAGE

(~E~ERAL

The Syst~m 2400 Assembly Language is a symbolic programming
langu3ge \vhich , facilitates the construction of machine I

]~mnua(Ye procrl~~lms throuQh the use of symbolic notation for
i::> C> P

machi,nc ' :instructions and data. The trans lation of an assembly
1 ang~~:.lge program in to its machine language repres entation is
i,crforn10d by an assembler program. 111e assembly process is
one of converting information expressed in assembly language
into equivalent information expressed in machine language.

Thc fundame ntal program clement is the statement. A program
l'cpresented as a sequence of statements recorded on an external
medium is referred to as a source program. The assembler reads
and translates the source program into an equivalent machine
language object program. The translation procedure requires
·~\v o separate passes or readings of the source program. During
pas s one a table of program symbols is built for reference
Juring pass two. Pass two provides a printed listing of the
assembled program and an external record of the resulting
object program which maybe loaded into t~e computer for exe
cution.

STATEMENTS

Statements are of three basic types: Comment) Instruction)
and Directive.

Comment statements serve as program documentation aids and
"l1'e simply reproduced on the program listing. A comment
statement is indicated by an asterisk (*) in statement
positio~ one.

Instruction statements are translated directly by the assem
bler into corresponding machine instructions.

Directive statements are special instructions to the assem
l) ler \vhich serve to direct the assemb ly process and generate
various forms of data.

Instruction and Directive statements are subdivided into
three fixed length statement fields:

Statement Position:
~ ..

1-6
8-13

15-72

Label Field
Operation Field
Operand Field .

If •

I·
•

)

Fo l lo\\' ing the first bl::lnk operand POSl. tl.on, the remainder
of the statement is ignored ::lnd is available for comments.

Llbel Field

Tl.c Label Field optionally contains a statement label con
sisting of from one to six alphanumeric characters with the
fi rst character ' alphabetic.

Operation Field

The Operation Field contains an operation mnemonic associated
\vi th an ins truction or assemb ler directive.

Operand Field

The Operand Field contains one or more operands associ.ated
with the opcr::ltion to be performed.

LOCATION COUNTER

The Loc::ltion Counter is used by the assembler to assign
consecutive addresses to statement derived object code.
The location counter is absolute if it represents an
actual memory address and rclocatable if it represents a
relative displacement from the beginning of the program.
In the rclocatablc case, the initial value of the location
counter is specified at load time as a relocation bias
corresponding to :the address in memory at which the program
is to originate. ;-The location counter is ini tialized by
the assembler t :o relocatable zero and is controlled by the
ORG assembler directive.

TERMS

Terms are the basic units required in building. ~xpressions.
A term may be absolute or relocatab Ie depending upon its
type and the mode of the location counter at the time it
is defined.

Asterisk

The Asterisk (*) is a term representing the current value
and mode of the location counter.

Symbol

A Symbol consists of from on'e to six alphanumeric characters
with the first character alphabetic. A symbol is usually

•

o .'

~"

dL~ .fin~d by"" its apl)·c~r~ncc as ~ statement label ~nd is assigned
the value and moue of the location counter at the time it is
L~n~oun tered.

Constant

Constant terms are absolute and are assigned their indicate'd
values. There are three types of constant terms: Hexadecimal,
Decimal, and Olaracter.

Hexadecimal Constant

A Hexadecimal Constant consists of a single hexadecimal number J

consisting of at most six hexadecimal. digits, enclos~d in
apostrophes and preceded by the letter X.

Examples:

Decimal Constant

X.' 3AF'
X' 1000'
X'FFFFFO'

A Decimal Constant consists of from one to seven decimal digits
in the ntll'neri c range 0 to 8" 388,,607 .

Examples: 100
10000
6999500

Character Constant

A Character Constant consists 'of a single ASCII 'character
enclosed in apostrophes and preceded by the letter C.

EXPRESSIONS

Examples: CIA'
C'+'
e'"

Expressions are formed by combining terms from left to right
using the following arithmetic operators:

+ Addition
Sub traction

* Multipl~cation

/ Division

TI1e first term of an expression may be preceded by a minus
sign to indicate negation. An expression is absolute if the

•

•

/

1~\..~t· numbcr of rL~locatablc t.erms is zero and relocatable if the
i:l't number of r clocatah Ie terms is one. Eu.ch operu.nd address
~l,(,!l~ rated by a relocat~lble expression mus t be modificd at load
title by adding the relocation bias in order to obtain a cor
l'csponding memory address. This function is pcrformed by the
loader in addition ~to program storage allocation.

DIRECTIVES

Directives are special instructions to the assembler relating
to as sembly contro'l "and data generation. Each directive is

" identified by a symbolic operation mnemonic which is wri tten
in the operation field of the statement. Wi th the exception
of the EQU directive, a label appearing within the label field
of an assembler directive is assigned the value and mode of
the location counter prior to processing the directive.

Define Orign (ORG)

" The location counter is set to the value and mode of the
expression appearing in the operand field.

Examples:

Define Equivalence (EQU)

ORG
ORG
ORG
ORG

o
X' 1000'
*+16
BEGIN+6

The label appearing in the label field is assigned the value
and mode of the expression appearing in the operand field.

Examples:

Define Constant (DC)

TEN
TEMP2
CON6

EQU 10
EQU TEMP+2
EQU X'4AFO'

The constants appearing in the operand field are evaluated and
gene rated into co"nsecutive storage words. Each line of con
stant data is identified by a single character type mnemonic
::ollowed by one or more constant items separated by commas and
en closed in apostrophes. 111e type mnemonic may be preceded by
an optional integer repeat constant which specifies the number
of line copies to be generated.

i-Iexadecimal, Type X

~\n X type " constant consists of the letter X followed by one or
~ore hexadecimal numbers separated by commas and enclosed in

t

•

. .

•

::postrophes. On~ stor~ge \VorJ is gcncr~tcd for each constant
i tem.

Examples: DC X' 400000'
DC X' 16rC,12AB6'
DC 4X'20'
DC lOX'O,O,FFFFFF'

Single Word, Type S

A type S constant consists of the letter S followed by one or
more expressions sep~rated by comm~s and enclosed in apostrophes.
One storage word is generated for each item specified.

Examples: DC S'-4'
DC S'TEMP+2'
DC 10S'0'
DC S'l,lO,lOO,lOOO'

Doub Ie \'Vord, Type D

A type D constant consists of' the letter 'D followed by one or
more double word constants separated by conunasand enclosed in
apostrophes. Two types of double word constants are permitted:

Fixed Point:
Floating Point:

±M
±M.N±E

~1, N, and E are strings of decimal digits representing the
integer, fraction, and exponent parts of the constant, respec
tively, and may be omitted when zero. Fixed point constants
are distinguished from floating point constants by the absence
of both a decimal point and exponent. The repeat constant, if
specified, is'interpreted as a signed fixed point binary scale
factor. In this case, the constant is converted to its fixed '
point rep res entation at the specifi ed scale. Two storage words
are generated fOT each constant item.

Examples: DC D' .125'
DC D'-.2554-3'
DC D'125000'
DC 23D'45.99656'

ASCII, Type A

A type A constant consists of the letter A follO\ved by a string
of characters enclosed in apostrophes. The characters are gen
erated into consecutive storage words and packed three characters
per word beginning wi th the left byte of the first word. Addi
tionally, a one or two digit hexadecimal number enclosed in

n -
~ . I ',

•
• •

1 ·
~ I

I
I

I .
I
I

I

_I

1
I

'-. ,

apostrophes ~1ppearing within the string is evalu~te<.l and gen
erated into the next ~vailable ch;tracter position.

Examples: DC }\'CiIARACTER STRING'
DC A'MESSAGE'OD"OA"
DC 20A' ,

A type C constqnt , consists of the letter C followed by a string
of char~cters ' enclosed in apostrophes. The characters are gen
erated into consecutive storage words with one storage word
alloc.ated : for each character.

" . ,Examples: DC CIA'
DC C'ABCOE'
DC 4C' ,

Define Storage ~ (OS)

111e number of words indicated by the value of the absoiute
operan~ expression are reserved in storage.

'Examples:

. ,
Define' Entry Symbols (ENTRY)

DS 10
OS X'64'
OS 0

The symbols appearing in the operand field correspond to state
ment labels which may be referenced by other programs to permi t
symbolic interprogram linkage.

Examples: ENTRY
ENTRY

Define External Symbols (EXTRN)

FADD,FSUB
SQRT

The symbols appearing in the operand field correspond to entry
symbols in one or more external programs which are to be loaded
£ollO\.;ing the current program. An external symbol may appear
only as an isolated term within the operand of a memory reference
instruction or type S ,DC directive. Evaluation of address
operands generated by external symbols is performed by the loader
at load time.

Examples: EXTRN
EXTRN

FMUL,FDIV
SIN

•
• •

I
' \

I .
I'
!

. I
i
I
I

I

!
I

- I
I
I
i
1 .

'I
I .

i """". ! "
;

\J'

(\)lhlitiunal Assemhly (U:Z,lFP,IFN,IFNZ,lFNP,IFNN)

Th,c f ,il·~~t Op ... ~.l.';llhl l'XPl'l~;;S.i.OI1 'is CV :ilU;ltl~d ilnd tested ~Igai, nst
~hl~ selc~ted IF ~ondi, li() n. 11: the condition :i.~; truc, the nUIlJi)cr
of ~uc~l'~sivc statements indi,cated hy the value of the absolute
:~l~C0Ih.l on cr~nd e'xnreSSiOll arc i ll l10reu by the assemble ·T. If (l

.l.... ,-P

sc ~onJ opcranJ is not speci f.i. ed, ~1l1 successive statements , are
innoreu until ~n END or ENDIF directive is encountered. The
pSrmissable IF c~nditions are inuicated as follows:

IFZ IF Zero (=0)
IfP IF Positive (>0)
IFN IF Negative «0)
IFNZ - IF Not Zero (+0)
IFNP - IF Not Positive «0)

I .

IFNN - IF Not Negative (>0)

Examples: IFZ COND
IFNP OPTION-l,4

End Conditional Assembly (ENDIF)

Assembly unconditionally proceeds with the next source statement.

Define Macro (MACRO)

A macro procedure is defined and assigned the name appearing in
,the label field. The first absolute operand expression specifies
, the nUJ:1~er M of statement? comprising the macro and the second

ab solute operand expression specifies the number N of macro
parameters. The macro statement is followed by ~1 statements
\-!hich comprise the macro skeleton. Each statement may specify
du~ny macro parameters which are to be replaced by specific

, arguments when the macro ' is re,ferenced. Each dummy parameter
consists of the '#' character followed by an integer i in the
range O<i <N. A macro is referenced by wr'i ting the macro name in
the operation field and a list of arguments separated by cornmas
in the operand field \"rhich are to be substi tuted for the dummy
parameters in the order: first argument-UO, second argument-#l,
etc. The single parameter 'ii' represents the number of arguments
present in the last macro reference and may be used in con
junction with conditional assembly directives th facilitate the
construction of variable argument macros. A macro definition
may incorporate any number of macro refer~nces; however, a macro
must be defined prior to being referenced.

•

e,

·1 Ex~mplc 1 : Storage to Storage MOVE Macro.
I
I •

M~cro Definition: I'

MOVE ~1.t\CRO 2,Z
LDA itO
STA #1

Macro Reference:

I
MOVE TEMP,ARG+4

Generated Statements: I
I
I

I

LDA TEMP
STA ARG+4

i
Example 2: Variable Argument CALL Macro.

J Macro Definition:

I CALL MACRO 5,3
BS itO
IFN it-2,3
DC S '!t 1 '
IFN 41-3,1
DC S'1t2'

Macro Reference:

CALL SUB

Generated Statements:

BS SUB

'. :1 . .

Macro Reference:

CALL SUB,ARG1,ARGZ ·

Generated Statements:
.... ·t

BS SUB
DC S' ARGI ~

DC S'ARG2'

I

\
.~

I

I
·1
1
I
I .

I·
I .

I
j
j

I . \

!

! .~

Program ~nJ (~ND)

'111C l~Dst~tcm~:~nt indicates the end of the source pro[!rwn . . The
vpcl'anJ expression specifics the execution entry address of the
pl'ogr~m. I

Listing Control ' Directives

The follmving assembler directives control the format of the
progr~m listing and are not printed on the list.

Progrrun Title (TITLE)

The character string appearing in the operand field is ,printed
at the top of each page of the listing.

Ne\'l Page (PAGE)

The print device is advanced to a new page prior to printing
the next statement.

Space Listing (SPACE)

The listing is spaced forward the number of lines indicated by
the value of the absolute operand 'expressi on.

Suppress Listing (NOLIST)

Listing of statements following the NOLlST directive is suppressed.

Resume Listing (LIST)

Listing of statements following the LIST directive is resumed.

Suppress Generated Data Listing (NODATA)

Listing of constant data generated by DC directives is suppressed.

Resume Generated Data Listing (DATA)

Listing of DC generated constant data is resumed.

Suppress ~1acro Statement Lis ting (NOSTAT)

Listing of symbolic macro statements is suppressed.

Suppress Conditional S~atement Listing (NOCOND)

Listing of conditional assembly statements and all statements
which are not assemb led is suppressed.

1
1
I
j
I
I

I

I

I

-I

INSTRUCTIONS

Instruction statements ~Te tr~nslated by the assembler into
corresponding mo.chine instructions. Each instruction state
ment is identified 'by a symbolic instruction mnemonic which
i.s \vritten in the operation field of the statement. A label
apPL:o.ring in the label field of an instruction statement is
assigned the current value and mode of the location counter.

Class I, ~Icmory Reference

1\ AJd DM . Decrement Memory
AD Add Doub Ie EX Execute
13 Branch 1M Increment Memory
BE 13r~nch if Equo.l LD1\ Load 1\
GG Branch if Greater LDD Load Double
131 Branch Indirect LDX Load X
13L Bl'o.nch if Less LDY Load Y
13NE Branch if Not Equal LDZ Load Z
ENG Branch if Not Greater M Multiply
13NL Branch if Not Less N Logical AND
BI\TV Branch if No Overflow 0 Logical Inclusive
Bn l\. Branch and Restore S Subtract
BS Branch and Save SD Sub tract Doub Ie
BV Branch if Overflow STA Store A
CPA Compare A STD Store Double
CPD Compare Double · STX Store X
CPX Compare X STY · Store Y
CPY Compare Y STZ Store Z

OR

CPZ Compare Z X Logical Exclusive OR
D Divide

Operands: A Direct, No Indexing
A,X Indexed using Rx
A,Y Indexed using Ry
A,Z Indexed using Rz

A: An absolute -or relocatable expression in the
numerical range - 32768<A<32767 which
specifies a memory or displacement address.

• c ..

I :
I
I

I
i

C lass ',. I I) 1mnledia te

.\1:\ Add Immediate A NIY AND Immediate Y
:\1\ Add 1ll11:1Cdi ate X NIZ AND Immediate Z
:\lY, Add Imlllcdiate Y 01/\ Inclusive Ol(Immcuiate
AIZ Add Imll1cdi.ate Z 01X Inclusive Ol{ Jmrncuiat(;
CIA Compare ImmeJiatc /\ 01Y Inclusive 01(Immediate
CIX Compare Imme<.liate X OIZ Inclusi vo OI{ Immediate
CIY Compare Immediate Y SIA Subtract Immediate 1\

CIZ Compare Inunedi ate Z SIX Subtract Immediate X
LIA Load Immediate A SLY Subtract Immediate Y
LIX Load Immediate X SIZ Subtract Immediate Z
LIY Load Immediate Y XIA Exclusive OR I rrune di ate
LIZ Load Inunediate Z XIX Exclusive OR Immediate
NIA fu~D Immediate A XIV Exclusive OR Immediate
NIX Al\!D lnunediate X XIZ Exclusive OR Immediate

Operands: A

Class

SLC
SLCD
SLL

A: An absolute or relocatable expression in the
numerical range -32768<A<32767 which specifies
an immediate operand. --

III, Shift

Shift Left Closed SRA Shift Right Algebraic
Shift Left Closed Doub Ie SRAD Shift Right Algebraic
Shift Left Logical SRL ,Shift Right Logical

/\
X
Y
Z

A
X
Y
Z

Double

SLLD Shift Left Logical Double SRLD Shift Right Logical Double

Operands~' . A ~' .. Direct
A X

.1 '
Indexed using Rx

;A,Y , Indexed using Ry
'A, Z Indexed using Rz

A: An absolute expression in the numerical
range -32768<A<32767 which specifies a
shift or displacement count.

t 4

1i

I
I

'1!

r

I.

1
j

.\

I
!
t

I

I

I
-/

I
I·
I ~

~

Class IV, Input-Output

I, J.) l,c ~11.1 D.i.rect \vD W-ritc Direct
1,S l~caJ Status \vS Write Status

Opcr~nds: A Direct'

Class

CAX
CAY

/\,':\
: A, Y
A,Z

A:
) ..

Indexcd using I~x

Indexed using Ry
Indexed using Rz

An absolute expression in the numerical
range -32768<A<32767 \vhich specifies a
device or displacement address.

V, Register-Register and Control

Copy A to X lAX Interchange A and
Copy A to Y lAY Interchange A and

X
Y

CAZ Copy A to Z IAZ Interchange A and Z
CXA Copy X and A NEGA Negate A
CYA Copy Y and A NEGD Negate Double
CZA Copy Z and A NEGX Negate X
CV Clear Overflow NEGY Negate Y
DSl Disable Interrupts ·NEGZ Negate Z
ENI Enab Ie Interrupts NOP No Operation
HALT Halt SV Set Overflow

Operands: None

Class VI, Supervisor Call

SVC Supervisor Call

Operands: A

A: An absolute expression in the numerical
range -32768<A<32767 which specifies a
supervisor call index. .

...
& 4

,
i
I
I
I
I
I
I

I .
I

I

I
-1
i
j
I
! •

l~l'l'OrS ,-ktectL~d during assclllh ly ~n'e inuicateu on the program
lsi ting by :.l single Cl"rOr flal~. The error flags an<.l their
meanings .:ll"C indicated as follows:

P Pass E:rror. 1\ statement label has a calculated
puss two vulue Jifferent from ~le value assigned
during pass one. This condition may result from
<.lata loss Juring one ' of the source passes or as
the result of a symbol not being defined prior to
its reference wi thin the operand of an ORG or DS _
assembler directive.

o Undefined Op Code. The operand field docs not
contain a recognized instruction or directive
mnemonic.

L -' Label Field Error. The contents of the label field
violate label syntax requirements.

D Doubly Defined Label. The label appearing in the
label field has appeared elsewhere as a statement
label. The value assigned at 1;-he first occurance
is used.

~ (/ ~. I

S Statement Error. ' The contents of the operand field
viol~t~ statement syntax requirements.

, \
;

1) Undefin'ed Symbol. A symbol appearing in the operand
field has not been defined ,in 'any program statement.

" ,

c ,' - ., :Cons;tant Error. An operand constant has been'
'incorrectly specified or does not lie in the correct
numerical range.

E'. Expression Error. An expression appearing in the
oper'and field has an improper mode or does not lie
in the correct numerical range.

?ROGRAl\1 LISTING'

TIle program listing is printed during pass two with listing fields
for errQr., flag; : location counter, instruction J and statement number
in the"indicated print positions:

,
'.-

..
1

3- 6
8-13

15-18
20-

Error Fl ag
Locltion Counter (IIex~decima~)

Ins truction (Ilexadecimal)
St~tcmcnt Number (Decimal)
Source Statement

The ' lis ting is printed wi th S6 lines per page. Each page is
nwnbered in decimal.

