
07-Apr-2002 03:05:23 2002-04-07

If you have just recived your TeachMover, you probably will want to start operating it right away. You can -
but there are a few simple things you must do first. This chapter will give you the minimum information you
need to quickly get started using and programing the TeachMover arm. After you've completed this chapter,
be sure to read chapter 3-5 (on mechanical & electrical construction of the arm) before proceding to chapter
6, where all the teach control operating instructions are given in detail. Propper utilization of all the arm
commands requires an understanding of how the arm itself is constructed.

The TeachMover's major structural components are shown in Figure 3-1 which is a duplicate of Figure 2-2.
The microprocessor card is housed in the base. The teach control cable and the D.C. power cord extend from
the rear of the base. The body swivels relative to the base on a hollow shaft attached to the base. The shaft is
called the base joint.

Six stepper motors whith gear assemblies are monted on the body and control each of the six joints. The
power wires for the motors pass from the computer card in the base through a hollow shaft to the body. This
arrangement provides a direct cable-drive system.

The upper arm is attached to the top of the body and rotates relative to the body on a shaft called the shoulder

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

1 of 19 12/21/2011 9:53 PM

joint. Similarly, the forearm is attached to the upper arm by another shaft known as the elbow joint.

Finally, the hand, also called the gripper, is attached to the forearm by the two wrist joints. Two separate
motors operate the wrist joints to controle the pitch and roll of the hand.

The TeachMover arm has a lifting capacity of one pound when fully extended, and a resolution (the smallest
amount the arm can be made to move) of 0.011 inches. The end of the hand can be positioned anywhere
within a partial sphere whith a radius of 17.5 inches, as shown in Figure 3-2. The maximum speed is from 2
to 7 inches per second, depending on the load (weight of the object being handled.) Detailed performance
characteristics of the TeachMover are given in Table 3-1; this table is reproduced i Appendix F for easy
reference.

In general, the base, the body, and all the extension members are hollow sheet-metal parts which are light in
weight but strong. All members are connected to each other by means of shafts, or axles, passing through
bushings mounted on the members.

Most robot arms have at least some of the drive motors mounted on the extensin members (forearm, upper
arm, hand). Unfortunately this adds to the weight of those members, and means that the other motors - those
that drive the extension members - need to be larger and more expensive than would otherwise be required.

If you look for motors on the TeachMover's extension members, you won't find any. That's because all six
drive motors are mounted in the body. This minimizees the weight of the extension members and keeps the
motor workload requirements as low as possible. To reduce the number of moving parts, all six drive gears
are mounted on the same shaft.

A unique system is employed to manipulate the arm members. From the drive system in the body, aircraft-
quality cables extend to the base, upper arm, forearm, and hand, as you can se by examining the TeachMover
or by looking at Figure 3-3. This cable design is an adoptation and refinement of the "tendon technolgy" used
in air-craft, high speed printers, and other types of equipment. Note that each cable is wound around the hub
of the drive gear. This serves not only to provide a take-up drum for the cable, but also gives the proper
gear-reduction ratios for each of the six drives.

Now, let's look briefly at how each of the cable drives is constructed. As you read about each mechanical
part, it's a good idea to locate that part on your TeachMover. You need not be an expert in all aspects of the
cable drive system, but some basic knowledge of how the cables work can prove extremely valuable later on.

As you look down on the hubs of the drive gears, you can see a set screw on each hub pinning the cable
tightly in a grove cut into the hub. As the drive gears turns, the hub is pulling, winding, one-half of the cable
while unwinding the other half. (See Figure 3-3)

Base drive

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

2 of 19 12/21/2011 9:53 PM

The base drive causes the body to rotate on the vertical base axle by driving a large pulley mounted on the
base. Two smal pulleys, located at the bottom of the body, changes the base cable direction so that the cable
feed is tangent to the surface of both the drive drum and the base pulley. You can see how these pulleys work
if you rotate the body manually with power turned off. Note the termination of the cable in a clamp fastened
by two screws on one side of the base.

Shoulder drive

Now hold the body in place and move the upper arm to see how the shoulder cable causes the upper arm to
rotate on the horizontal shoulder axle. Note how this cable passes around a drive pulley on the shoulder shaft,
then terminates on the upper arm housing. At the termination point, you'll notice two screws. These screws
are used to maintain the cable under tension, as is explained in part C, below (Cable Adjustments).

Now rotate the shoulder joint again and notice that the shooulder rotation always causes equal and opposite
elbow and wrist rotation so that the orientation of the hand remains unchanged. This feature is built into the
TeachMover's cabling design to make sure that the hand can hold a glass of liquid while the shoulder rotates
without spilling the liquid.

Elbow drive

The elbow cable causes the elbow to rotate on the horizontal elbow axle. Note that this cable first passes
around an idler pulley on the shoulder axle, then around a drive pulley on the shoulder axle, then around a
drive pulley of the same diameter attached to the elbow axle. The cable terminates at a tension mechanism on
the forearm housing. Rotate the elbow manually and you'll notice that the wrist rotates the same amout in the
opposite direction, thus maintaining hand orientation.

In rotating the elbow manually (that is with the power off), you may have noticed somthing else: when the
elbow rotates, the hand opens and closes. Designing cabling to prevent this from happening mechanically
would have added undesirable complexity. Instead, a built-in software routine automatically decouples elbow
rotation from hand closure. To see this in action, turn the power on and press one of the E keys. Notice that
now the elbow moves without opening or closing the hand.

Note: When the TeachMover is in serial interface mode, this automatic decoupling is inoperative, and, once
again, rotating the elbow will effect hand closure. It is, however, easy to provide for the decoupling yourself
when you write a host computer program. A simple formula to accomplish this is given later when the
discussion of the commands available for your use in serial interface mode.

Wrist drive

The right and left wrist cables cause the hand to "roll" and "pitch" relative to the forearm. These cables
together control the wrist joint (Figure 3-4). Both cables pass around idler pulleys on the shoulder axle and
the elbow axle, then around the hubs of bevel gears located on the wrist axle. Tension is maintained in both
cables by means of turnbuckles (to find them, look inside the forearm housing.)

Note how the two bevel gears on the wrist axle mesh with the output gear on the hand axle. This
configuration forms a diffrential gear set.

To see how this diffrential works, turn the drive gears so the left and right wrist cables both move in the same

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

3 of 19 12/21/2011 9:53 PM

direction. You can see the wrist gears control the pitch of the hand. Turning the drive gears so the wrist cables
move in opposite directions controls the roll of the hand.

The TeachMover's built in software automatically coordinates left and right wrist motions to produce the
amount of pitch or roll you specify with the P and R keys on the teach control. When the TeachMover is in
serial interface modde, you cannot specify pitch and roll directly, but only the amonut of motion of the left
and right wrists. These motions can, however, be coordinated by a simple formula to produce the desied
amount of pitch or roll.

Hand drive

The hand cable system is shown in Figure 3-5. Attached to the output gear of the differential gear set, the
hand housing holds two pairs of links, and each pair of links terminates in the gripper. The housing, the links,
and the gripper are attached to each other by small pins. Torsion springs located on the pins attach the links to
the hand housing and provide the return force to open the hand as the hand cable is slackend.

Note: The length of the hand varies slightly with hand opening. For most applications, the amont of variation
is negligible. For high-precision work, however, it may be necessary to take the variation into account. A
formula for this is given at the end of Appendix D.

The hand cable is attached to the hand drive drum located in the body. The cable passes over an idler pulley
located on the shoulder axle, and then over an idler pulley mounted on a sensing bracket found inside the
upper arm housing. This sensing bracket is also called the grip micro switch. This switch goes on when the
cable tension increases just beyond the point where the hand closes on an object (or on itself).

As we'll see later, the status of the grip switch can be used in programing for conditional branching. When the
grip switch is activated, the green "CLOSED" light in the hand-held teach control goes on. Try it. If you close
the gripper on an object and the green light does not go on, then check to see whether the hand cable has
come off the shoulder idler pulley, the elbow idler pulley, or the sense bracket (grip switch) pulley. If it has,
then simply replace it (refering, if necessary to the Hand Cabling Diagram on Page 3.13), and try again. If the
green "CLOSED" light goes on before the gripper actually closes, then try tugging on the hand cable a few
times, or adjusting the cable tension (see Section C, Cable Tension Adjustments, below.)

Attached to the other end of the tension spring, and in line with the hand cable, you'll notice two separate
link-drive cables. These cables pass over two guide pulleys in the wrist yoke and then through the center of
the hollow hand axle. When the cables emerge from the hand axle, they pass over separate idler pulleys
mounted in the base of the hand. They then pass around idler pulleys mounted on the inner links of the hand,
and return to terminate on the shafts of the two pulleys mounted on the hand base. This arrangement forms
two block-and-tackle devices that augment the gripping force of the hand. The use of identical cabling on
both links provides for symmetrical hand closure.

The tension spring mounted in series with the hand-cable drive assembly permits gripping force to be built up
by the position-controlled drive motor once the hand has closed. Figure 3-6 shows: (1) The relationship
between hand opening and drive motor steps (this is the line sloping down to the right), and (2) the
relationship between gripping force and drive motor steps once the hand has closed (this is the line sloping up
to the right). Note that the maximum gripping force is 3 lbs; this occurs approximately 100 motor steps
beyond closure. Figure 3-6 is reproduced in Appendix F for ready reference.

Cabel tension adjustment

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

4 of 19 12/21/2011 9:53 PM

After a period of extended use or after an extreme overload, tension adjustments may slip. The relaxed half of
a cable should not have noticeable slack. If a cable does develop slack, then the cable needs to be tightened.

Tension adjustments are provided at the folowing locations:

DRIVE LOCATION

Base Right side of the base (see Figure 3-7)

Shoulder Right side of the upper arm

Elbow Left side of the forearm

Wrist Turnbuckle inside forearm

The adjustment procedure is as follows:

Base, shoulder, elbow:
Losen both tension screws.
Pull firmly (2-3 lbs.) on one tension screw to tension the cable as shown in Figure 3-7, and
tighten the other screw with the other hand.
Release tension and tighten both screws.

Be careful not to put excessive tension in the cable. Thight cables can cause the motor to slip with a
loss of orientation between the microprocessor and the arm position.

1.

Wrist:

Each turnbuckle may be tightend or loosened as required to achive proper tension. As with the other
adjustments, be careful not to tension the cables so much that the motors slip.

2.

Each of the cable drives is controlled by a stepper motor. The motors used have 4 coils, each driven by a
power transistor. The drive is digital, with the transistors either turned on or turned off to obtain the desired
pattern of currents, a rotating magnetic field is obtained inside the motor that causes the motor to rotate in
smal increments or steps. More information on stepper motor control can be found in references (3) and (5).

Stepper motors are not the only kind of motors used in robot arms. Some arms use servo motors with
electronic feedback loops for precise position confrol. Unlike stepper motors, these servo motors cannot
develop slippage. This advantage must be weighed against the servo motor's far greater cost.

Keeping cost as low as possible is one reason we chose to use stepper motors for the TeachMover. Another
reason is that stepper motors are easier to control from a computer than are servo motors.

Now, in order to turn a stepper motor in the TeachMover, a particular sequence of binary phase patterns is
output to the desired motor, one pattern per step. In order to change motor direction, the order in which the
phase patterns are output is simply reversed. The particular phase patterns used in the TeachMover generate a
sequence known as "half-stepping;" the steps are half the size specified by the motor manufacturer. (The

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

5 of 19 12/21/2011 9:53 PM

motors used to drive the TeachMover are specified by the manufacturer at 48 steps per revolution, but are
actually stepped at 96 steps per revolution.) Compared to full stepping, half-steppingproduces smoother
slow-speed motions, reduces the power requirement, and improves the arm resolution by a factor of two.

The relationship between motor steps and actual joint rotation is given in Table 4-1. (The relationship
between motor steps and hand opening was given in Figure 3-6.)

Table 4-1
Motor steps and joint rotations

Motor Joint Steps per degree Steps per radian

1 Base 19.64 1125

2 Shoulder 19.64 1125

3 Elbow 11.55 672

4 Right wrist 4.27 241

5 Left wrist 4.27 241

The torqe output (lifting capacity) of the stepper motors used on the TeachMover varies with their speed. At
slow speeds, maximum torque is obtained. Above a critical high speed motors suddenly slip, and no torque is
obtained. (Motor slippage can cause a discrepancy between where the arm is and where the computer
program thinks it is, and this may result in unpredictable perrformance.)

The torque required by the motors of the TeachMover also depends on the configuration of the arm and the
load held in the hand. This relation is a complex trigometric expression involving the lengths and weights of
all the arm members. Instead of solving such an expression before each arm movment to determine the
maximum allowable speed, it is simpler to program for the worst case.

The worst case is when the members of the arm are at maximum horizontal extension, requiring the
maximum motor torque. All other configurations will require less motor torque. With the arm fully extended
but with no load, the torque on all the motors is the same (by design) and motor speed can be as high as 400
half-steps per second, as indicated by the "no-load" point in Figure 4-1. Above this speed the motors will slip,
and the torque will be zero. With the arm carrying the maximum rated load (that is, with the arm lifting 16
ounces) the torque on all the motors (except the base motor, which does not lift) is approximately equal, and
the maximum speed without slippage is 99 half-steps per second; this is shown as the "full-load point" in
Figure 4-1. At half rated load (8 ounces), maximum speed without slippage is 206 half-steps per second.
These figures will become important later, when we discuss the commands you can use to control the speed
of the TeachMover arm.

To perform a task as fast as posible without risking slippage, the following suggestions may prove helpfull:

Lowering a load may be done at no-load speed-even if the arm is holding a load - provided the sholder,
elbow and wrist do not raise.
Swieling a load about the base joint may always be done at no-load speed.
Opening the hand, or closing the hand until the contact point is reached, may always be done at no-load
speed.

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

6 of 19 12/21/2011 9:53 PM

However special care must be exercised in selecting the proper speed when:

raising a load with any joint.
developing a gripping force once the gripper has closed on an object or on itself.

Moving the arm from one position to another often requires rotation of more then one joint. In such cases, the
motion can, in principle, be accomlished in either of two ways: the joints can be rotated sequentially or
simultaneously. For example, as shown in Figure 4-2, motion of the arm from A to C can be accomplished
through separate, sequential motions of the elbow and then the shoulder (A to B, then B to C), or through a
coordinated motion in which the elbow and shoulder joints move simultaneously (A to C).

In general, coordinated motion is both smoother and faster than sequential motion. TeachMover firmware is
programmed to produce coordinated motion whenever two or more motors are needed to move the arm from
one recorded position to the next. To accomplish the coordination, the motor steps are timed so that each
motor is pulsed at regular intervals during the full duration of the move. For example, if the shoulder motor is
told to move 3 steps and the elbow motor is told to move 21 steps, the resultant timing will be as shown in
Figure 4-3.

The TeachMover's motor-control algorithm has another feature: it produces controlled acceleration and
deceleration to minimize jerkiness when the arm starts and stops. The velocity profile for motion of a stepper
motor at a speed of 450 half-steps per second is shown in Figure 4-4. Note that for relatively short motions,
such as the 100-step motion shown in Figure 4-4, the motor might not actually reach the specified speed
before it needs to begin decelerating for a smoth stop. (We'll describe how to specify motor speeds in Chapers
6 and 7.)

Although the TeachMover's arm members move along curved paths, motion in a straight line may be
approximated by a series of these curved motions. For example, one of the TeachMover's built-in
demonstration programs moves the arm along an approximatly straight 10-inch line by means of 11 steps
spaced one inch apart. (We'll explain how to run the demonstration programs later.) The segmented
approximation has a theoretical error of only 0.018 inches in tracking the desired 10-inch line.

If you open up the base of the TeachMover (by gently laying the unit on its side and removing the four
screws you'll find on the bottom), you'll see the circuit card that houses all the internal electronics, including
the 6502A Microprocessor (Figure 5-1). In technical terms, this micrprocessor is an 8-bit, 2MHz chip. It's the
same chip used in the Apple, Atari, & PET computers; it is used in the TeachMover to coordinate all joint
motions and handle all input and output.

TeachMover firmware (permanently built-in software) is contained in another chip housing 4K bytes of
read-only memory (ROM); this firmware interprets the commands you give the arm, converting these to
electrical signals the arm can obey. Also contained in the 4K ROM are two built-in demonstration programs.
More on these later.

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

7 of 19 12/21/2011 9:53 PM

The circuit card also includes chips containing 1K bytes of random-access memory (RAM); this is enough
RAM to let you store an arm-motion program of up to 53 steps. It is possible to "piggy-back" a second set of
RAMs on the first, thereby extending your program capacity to 126 steps. See Appendix C for instructions.

In the rear of the base, on either side of the flat cable that goes to the hand-held teach control, you'll see two
multi-pin connectors. These are the serial interface ports that allow you to connect the TeachMover to a host
computer, printer, or terminal. A switch on the coputer card allows you to select the serial transmission speed;
eight standard speeds are available, from 110 to 9600 Baud. Further details of serial port operation are given
in the chapter on serial interface mode.

The computer card also contains an auxiliary parallel input/output port. This lets you interface the
TeachMover to external equipment with a 16-conductor flat ribbon cable. Five TTL compatible user output
bits can be set (to 1) or cleard (to 0) under program control to turn other equipment on or off when a given
arm motion is complete. Seven TTL compatible user input bits can be used to control an arm sequence when
a given external condition is met. The 16 pins and theier functions are given in Figure 5-2 and Table 5-1.
We'll explain how to use the input and output bits i Chapter 6.

A block diagram of the TeachMover's electronic circuitry is shown in Figure 5-3.

Table 5-1
AUXILIARY I/O
CONNECTOR

Pin no. Function

1 +5V-User Power

2 Ground

3 Not Used

4 Input bit 1

5 Output bit 5

6 Input bit 2

7 Output bit 4

8 Input bit 3

9 Output bit 3

10 Input bit 4

11 Output bit 2

12 Input bit 5

13 Output bit 1

14 Input bit 6

15 Ground

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

8 of 19 12/21/2011 9:53 PM

16 Input bit 7

The TeachMover's hand-held teach control (*see Figure 6-1*) performs most of the same functions as do the
teach controls on large-scale industrial robots. To provide a wide range of command options yet keep product
cost to a minimum, we employed keyboard "overlays" that allow the same set of keys to provide three
different kinds of functions. Rather than use an expensive alpha-numeric display to indicate which overlay is
in use, we developed a simple system of color-coded lights and key lables.

For example, when you press the red MODE key, the red MODE light goes on, and the words printed in red
(TRAIN, STEP, PAUSE, RUN, etc.) apply to the keys.

Pressing certain of these keys (PAUSE, OUT, POINT, JUMP or SPEED) will cause the yellow ENTER light
to go on. When this light is on, the yellow numerals next to the keys apply, and you can enter numericals
values (exactly how, we'll explain later.) When the ENTER light is on, pressing the REC button will clear the
entered value, allowing you to then enter the correct value. Pressing the MODE button terminates enter
mode.

Finaly, the labels printed on the keys themselves (B, S, E, P, R, G, and REC) apply when the teach control is
in TRAIN mode (or in MOVE mode, as you'll see.)

There are 13 diffrent control commands you can give with the teach control. (A concise summary of all teach
control commands is given in Appendix F.*)

TRAIN

You can put the teach control into train mode in two diffrent ways:

Simply turn the unit on. This puts the teach control into TRAIN mode automatically. (Note: turning the
unit off erases the current program, and is therefore not recommended during arm training.)
Press the red MODE key at any time to make the red MODE light go on, then press the key labeled,
TRAIN.

Once the teach control is in the TRAIN mode, you can use the arm-motion (joint-control) keys and the REC
key to manipulate the arm and record arm positions. (If necessery, refer back to Chapter 2, Section E, Trial
Programming, to review how to do this.)

You can program up to 53 steps; these steps are internally numberd 0-52. (By adding additional RAM
according to the instructions in Appendix C, you can extend program memmory to 126 steps; these step are
internally numberd 0-125.)

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

9 of 19 12/21/2011 9:53 PM

Important Point: Pressing the REC key writes the current program step and then increments an internal
sequence pointer so the TeachMover memory is ready to record the next step.

RUN

To run a program, first press the MODE key to exit from TRAIN, then press RUN. To stop a program while
it's running, just press STOP. The MODE light will go on, and you can press RUN again, or TRAIN, or any
other control key.

CLEAR

This command clears all recorded arm positions and operations from program memmory, and sets the
sequence pointer to Step 0. You must use this command before you start entering a new program sequence.

To operate the CLEAR command:

Press MODE and hold the key down.
Then press CLEAR at the same time.

A word of caution: Do not use the CLEAR command unless you mean it! When you use CLEAR as above,
your program is erased. A program can be uploaded to a host computer and saved on a disk. We'll explain
how to do this in the next chapter.

ZERO

The TeachMover keeps track of the arm position with a set of six internal motor position registers. Each
register contains the number of steps one of the six motors has taken since the registers were initialized.
These registers are automaticaly initialized, or set to zero, when power is turned on.

In addition to setting all six internal postion registers to zero, the ZERO command also resets the sequence
pointer to zero. The ZERO command lets you initialize the position registers at other times as well. As with
the CLEAR command, you can activate the ZERO command only if you press the ZERO key while holding
down the MODE key.

At the starting point for each program, the arm is first placed in a known starting position (such as the on
described in Appendix G*,) then the ZERO command is enterd. As the arm moves, the computer keeps a
count of the number steps each motor takes.

If you place the arm in the correct initial position, but forget to use the ZERO command prior to starting a
recorded program, the arm first moves to reverse the count of all the internal position registers to zero. To
avoid this problem it is a good idea to get into the habit of using the ZERO command just before runnig a
recorded program.

PAUSE

This command is introduced in Chapter 2, Section E (Trial programing.) To review: If you want to program a
pause into a program, perform these steps:

Press the MODE key (if the MODE light is off.)

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

10 of 19 12/21/2011 9:53 PM

Press the PAUSE key. The yellow ENTER light will come on.
Enter a numer (0-255) corresponding to the number of seconds you wish the arm to pause. If you make
an error in the numerical entry, you can "erase" it by pressing the REC key while the ENTER light is
still on. Then enter the correct value.
Enter the MODE key again. This terminates the ENTER mode.

Important: The PAUSE command is saved as a program step, and the sequence pointer is incremented.

SPEED

This command lets you change the speed of the arm by causing all the subsequent steps and manual teach
control motions to be executed at the commanded speed. The SPEED does not get recorded as a program
step. Try this:

Press the MODE key (if the MODE light is of.)
Press the SPEED key. Yellow ENTER light will come on.
Enter a number from 0 to 15. Zero represent the slowest speed (it's not zero speed!) and 15 represent
the fastest. (The TeachMover is always initialized to speed 5 when you turn it on.) If you make an error
in entering the SPEED value, you can erase it by pressing the REC key while the ENTER light is still
on. Then enter the correct value.
Press the MODE key again.

The correspondence between the speed numbers and the number of steps per second of the drive motors are
given in Table 7-3.

There is a maximum speed you can drive a motor before causing it to slip. For the worst-case configuration
(arm fully extended, therefore requiring maximum torque), the highest without slipping depends on the load
the arm is carrying, as indicated in Item F-5.

Under certain conditions, motors can be operated at higher speeds without slipping. In particular:

If shoulder, elbow, and wrist all descend, the arm may be lowered at the no-load maximum speed (400
half-steps per second, teach control speed 8) even if it is carrying a load. However, be careful not to
exceed the speed given in the table whenever lifting a load with any joint when the arm is at or near
full extension.
The base joint may be swiveled as fast as speed 7 even if the arm is carrying a load.
The hand may always be opened as fast as speed number 12.
The hand may always be closed as fast as speed number 10 until the hand closure contact point is
reached. However, once the grip has closed, it is best to stay at or below a speed number of 6 in order
to build up gripping force without motor slippage.

STEP

Once all or part of a program has been recorded, it is often useful to move the arm through the program one
step at a time. To do this use the STEP command. First press the MODE key, if necessery, then press STEP.
This moves the arm to the next programmed position. Press STEP again, and the arm moves to the next
position again, and so forth.

The other thing you should know about the STEP command is how to use it for program editing. To change

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

11 of 19 12/21/2011 9:53 PM

an already-recorded arm position, simply STEP through the program until you reach the position you wish to
change. Switch over to TRAIN mode, move the arm to the correct position, and then press the REC key. This
overwrites the old position.

The POINT command provides an alternative method of accessing program steps for editing.

JUMP

This command lets you write rather sophisticated arm-motion programs by allowing for conditional
branching - one of the most powerful features of classical computer programming. The JUMP command tests
the user input bits on the Auxiliary I/O connector (P17) discussed in chapter 5, section C. Here is how it
works: When you press the JUMP key, the yellow ENTER light comes on, and you enter not one, but two
numbers. The MODE key is pressed after each number to allow the computer to store each number
separately. A number may have more than one digit requiring you to press more than one key to enter the
number.

The first number identifies the jump condition.
The second number identifies the program step to jump to if the jump condition has been met.

The jump conditions are listed in Item F-6.

Note: When you step through a JUMP command, the usual incrementing of the sequence pointer is slightly
modified. For example, let's say you STEP to the command. JUMP 9,7. This unconditional jump sets the
value of the sequence pointer to 7. If you press again, step number 7 gets executed, but the sequence pointer
is not incremented. If the pointer were incremented first, as it usually is with the STEP command, then step
number 7 would be skipped, and step number 8 would be executed instead. On subsequent pressings of the
STEP key, the sequence pointer is incremented as usual.

POINT

In a way, the POINT command is similar to an unconditional JUMP. For example, POINT 12 means go to
Step 12 in a program and proceed from there. However, unlike the JUMP command, POINT does not create a
program step. POINT is used simply to move to a given step in an existing program. It can be invoked even
in the middle of program execution by pressing the MODE (STOP) key first.

One of the most useful applications of the POINT command is program editing. Instead of using the STEP
command to go to a program step you want to change, just POINT to the corresponding program step
number. Then press MODE or TRAIN (or appropriate command,) and enter the new program step. Keep in
mind that the STEP command points to the step and execute it. Thus, when you use STEP for editing, the
program step you change is the one the TeachMover just executed. However, the POINT command points to
the step without executing it.

GRIP

This command will cause the gripper to close 32 half-steps past the point at which the grip switch is activated
as the gripper first closes. This builds up about 1 lb. of gripping force.

This command is diffrent from using the G keys in train mode. The G keys will simply command the fingers
to open or close to a particular spacing, regardless of whether the hand is holding an object. The GRIP

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

12 of 19 12/21/2011 9:53 PM

command, on the other hand (sorry for the pun!), close on an object and then builds up 1 lb. of gripping force
regardless of the size of the object. Thus, the GRIP command is usefull when you want the arm to pick up a
variety of objects, whereas the G keys are a better choice when you want the arm to sense whether a
particular object is present.

Note: Once in a while, the grip switch may fail to operate, or the GRIP command opens the gripper instead of
closing it. See page 3.14, Hand Drive, for simple remedies.

MOVE

This activates the joint control keys used in TRAIN mode, but does not change the internal position registers
or allow a position to be recorded. In other words, if you press MODE, then MOVE, then one of the joint
control keys, then REC, you'll find that the REC key has no effect.

The MOVE command proves useful in moving the arm to a known initial position in the event of motor
slippage or mekanical interference from an external obstacle. The procedure is:

Use the ZERO command. (Remember, this sets the internal position registers and the sequence pointer
to zero.)
Use the MOVE command.
Use the arm-motion keys to achive the correct initial configuration. (For very precise position control,
first use the SPEED key to specify a speed of 0.)

Note that this does not change the recorded program in any way; it simply lets you start the program again
with the arm in its correct initial position.

In some cases, you may want to reinitialize the arm by returning it to a know position other than the initial
position. The ZERO command is not useful here. Instead, follow these steps:

STEP (or POINT then STEP) until the arm reaches the position you wish to use for initializion.
Use the MOVE command.
Use the arm-motion keys to achive the correct position.

When you subsequently RUN the program, all settings of the internal position registers are associated with
the recallibrated new initialization position.

A similar use for the MOVE command is if an object isslipping from the gripper because the gripper isn't
holding it tight enough. Instead of reprogramming, you can just STOP the program, use the MOVE
command, use the G key to close the gripper a bit, then RUN. All subsequent settings of the internal position
registers will now be associated with the new grip setting.

FREE

FREE is similar to the MOVE command, execpt it turns off all motor currents to allow you to position the
arm manualy. In many cases, it is simply a matter preference whether you use MOVE or FREE. However, as
mentioned earlier, you will probably find that you get finer position control when you use the MOVE
command with a speed setting of 0, rather than moving the arm manually in FREE mode. Try both and see.

OUT

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

13 of 19 12/21/2011 9:53 PM

This is the command that lets you turn external equipment on and off based on arm position achived or
conditions met. You can also use it to turn on and off various lights on the hand-held teach control.

When you press OUT, the yellow ENTER light will come on, and you must give two numerical entries
(pressing the MODE key in between). The first entry is an output number (see below,) and the second is 0 or
1. (In the case of the teach control lights, 0 indicates "off" and 1 indicates "on".) The output numbers are
listed in Item F-6.

Exerciser

Block stacking

Connecting the TeachMover arm to a host computer or a terminal greatly extends the unit's capabilities. As
we will see, use of the TeachMover's serial interfaces allows you to write programs that specify arm positions
by means of Cartesian coordinates, programs that actually measure the position and thicknes of an object, and
much more - all without losing the ability to program the arm from the hand-held teach control.

"Configuring the serial ports" refers to making sure that your computer and the TeachMover can "talk" to one
another. This requires taking care of the following:

electrical connections1.
transmission rate2.
data format3.
settings for standard interface signals4.
opening the port5.
testing the configuration6.

Depending on the computer you're using, configuring the serial ports may be straightforward and simple, or it
may be complex. We'll start with the most basic steps first, then procced to the more intricate details.

If you follow the procedure given below, and yet the arm won't respond to serial port commands, chances are
that some of the details of configuring you computer are not correct. If this seem to be the case, carefully
review the user manual that came with your computer or call a costomer service representative employed by
the computer manufacturer.

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

14 of 19 12/21/2011 9:53 PM

Electrical connections

In the back of the TeachMover's base you'll find two mulit-pin connectors (Figure 7-1*.) These are the two
serial ports.

Signals that enter the left port (P2) always pass through to the right port (P1) unchanged.
Signals that enter the right port pass through to the left port unchanged, unless the signals are a series
of characters begining with an "@" sign and terminating with <CR> (carriage return); these signals are
not passed through, but are iterpreted as arm commands. (As we'll se later, one of the serial interface
commands lets you specify a diffrent recognition character in place of the "@" sign.)

Thus, to operate the arm from a host computer or a terminal, connect the computer or terminal to the
TeachMover's right serial port (Figure 7-2 a. and b.*.)

Transmission rates

The TeachMover is shipped with both serial ports configured to operate at a transmission rate of 9600 baud
(9600 bits per second), for both send and recive. You can change this rate to any of seven other standard rates
by means of three switches located on the TeachMover computer card (Figure 7-6*.) The available rates and
the corresponding switch settings are given in Table 7-1. (This table also appears in Appendix F for easy
reference.) These switches should be changed when power is off, since the switch settings are read
TeachMover firmware on power-up only.

As with the TeachMover, most computers have some means of setting baud rate - either through switches on
a circuit card, or via commands that can be issued under the computer's disk operating system (DOS,) or as
part of VASIC. The main thing is that both the TeachMover and your computer be configured to operate at
the same baud rate; otherwise communication between the two will be impossible.

Data format

The TeachMover uses the following data format:

word length = 8 bits
1 start bit
1 stop bit
no parity bit
full duplex

Many computers have the above as their "default" format - that is, the format in which data will be
transmitted if you do nothing special to configure the format. However, with other computers you will need
to configure the format explicitly. Consult your computer manual to learn how to do this.

Standard interface signals

Some computers and terminals require logic levels on certain pins to indicate the following status conditions:

Data Terminal Ready1.
Clear to Send2.

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

15 of 19 12/21/2011 9:53 PM

Carrier Detect3.
Request to Send4.

The TeachMover does not use these signals, but does pass them through when it is placed in series between a
computer and a terminial.

However, when only a single computer or terminal is connected to the TeachMover (or in some cases even if
the TeachMover is placed in Series between a computer and a terminal,) you may need to modify the
TeachMover in order to provide these signals.

To find out if this is necessary, consult the user manual for your computer to determine wheter any of the four
above-mentioned serial port signals are required. (With som computers, the user has control over whether
these signals are required. If this is the case with your computer, then configure the computer so that these
signals are not required.) If any of these signals are required, then, if you have a peripheral in series with the
TeachMover, check the user manual that came with that peripheral to see whether the peripheral supplies the
required signals for transmitting and receiving data. If it does, then all should be well. If not, then you will
need to modify the TeachMover.

The modification procedure is simply to solder a jumper across the appropriate terminals on the TeachMover
circuit card as shown in Figure 7-7, using the information given in Table 7-2; the jumpers are labelled W1,
W2, W3, W4. (Note: soldering a jumper will have the effect of permanently setting the corresponding signal
to logic level 1, or "on.")

Table 7-2
Auxiliary Control Lines

Left Port Pin No. Description Right Port Pin No. Jumper

8 Data Carrier Detect 8 W1

1,7 Ground 1,7 -

3 Transmit from TeachMover 2 -

2 Receive by TeachMover 3 -

4 Request to Send 4 W4

5 Clear to Send 5 W3

20 Data Terminal Ready 20 W2

Opening the port

This step refers to configuring your computer so that commands and data are properly routed from your
computer to the TeachMover. If your computer has only one serial port, there may nothing special to do other
then use the proper BASIC commands for input and output throgh that port. On some computers, you might
also have to use a special routing command or switch setting to transmit to the TeachMover whatever would
normally go to a parallel printer. Some computers have several serial ports, and allow you a choice of
transmission chanells.

In all cases, consult your computer manual to find out what is required.

Testing the configuration

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

16 of 19 12/21/2011 9:53 PM

Once steps 1-5 above are completed, you are ready to test the serial configuration. This is best accomplished
by issuing an "@CLOSE" command. This command closes the gripper until the grip switch is activated.
We'll go into the details of this and all the other commands in the next section, but for now it is important to
know how the TeachMover responds to arm commands in general.

Ten diffrent commands can be issued to the TeachMover over the serial lines. (A concise summary of all ten
commands are given in Appendix F*.)

Note:

It is a good idea to familariarize yourself whith all the teach control commands (Chapter 6) before
reading about the serial interface commands in this chapter.
All commands can be abbrevated to an "@" sign plus the first three characters--@CLO for @CLOSE,
etc.
All characters and numeric values are decimal ASCII (industry-standard character format).
Once a serial command is executed, the the teach control is left in TRAIN mode, with two exceptions:

@RESET leaves it in MODE mode.
@RUN simply runs until another command stops it.

However, the indicator lights will remain as they were before the serial command was executed.
(Example: If MODE light is on, and then, say, an @CLOSE command is executed, the Teach Control
will then be in TRAIN mode but with the MODE light still on.)

If you wish to change the status of the indicator lights, you can use the @STEP command with all the
parameters set to zero except the "OUT" value (see below.) No other serial command affects the status
of the lights (except the closed light which always indicates the state of the gripper switch.)

The ten commands are as follows. Details of syntax and usage begin on the next page. Sample
programs using these commands are given in part C of this chapter.

@STEP
@CLOSE
@SET
@RESET
@READ
@ARM
@DELAY
@QDUMP
@QWRITE
@RUN

@STEP

The @STEP command is analogous to using the teach control SPEED command, the TRAIN command and
the OUT command all at once.

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

17 of 19 12/21/2011 9:53 PM

The @STEP command causes all six of the stepper motors to move simultaneously. The syntax of this
command is:
@STEP <SP>,<J1>,<J2>,<J3>,<J4>,<J5>,<J6>,<OUT><CR>

where:

<SP> gives the speed of motion,
<J1> to <J6> are the number of half-steps that each of the six motors are to be moved,
<OUT> specifies the bit pattern to go to the user outputs, and
<CR> signifies carriage return.

As explained above, the arm respondes with [0<CR>] if you have made a syntax error, and [1<CR>] if the arm
executes the command. However, if the STOP key gets pressed before the specified motion is completed, the
arm returns [2<CR>] instead. (This is discussed further at the end of the "@CLOSE" command, below.)

Now here are the details.

Speed Value, SP

The speed value, SP, is related to the motor speed in half-steps per second by the folowing formula:
Motor Speed = 1843200/(|SP - 255| * 256)

Tabel 7-3 gives the correspondence between motor speed, teach control speed numbers, and serial interface
speed values (SP.) Note that although only 16 speeds are possible using the hand-held teach control, you can
specify 246 diffrent speeds (SP = 0, 1, 2, ..., 245) in serial interface mode. Table 7-3 is reproduced in
Appendix F for ready reference.

It's a good idea before using the @STEP command to review the maximum speeds that you can drive the
motors without causing them to slip. You will find these speeds in a table in Appendix F, Table 5; the
maximum speeds are given in three diffrent ways: half-steps per second, teach control speed numbers, and
serial interface speeds values (SP.)

TABLE 7-3
Stepping Rates

Teach Control
Speed Number

Serial Port
Speed Value

Half-Steps
Per Second

0 0 28

1 111 50

2 159 74

3 183 99

4 205 141

5 221 206

6 232 300

7 236 360

8 238 400

9 239 424

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

18 of 19 12/21/2011 9:53 PM

10 240 450

11 241 480

12 242 514

13 243 554

14 244 600

15 245 655

Motor Steps, J1-J6

The magnitude of each of the quantities J1-J6 indicates the number of half-steps the motor should driven. The
sign of each number indicates the direction; positive directions are indicated in parantheses as follows:

J1 - Base Swivel (counter-clockwise)
J2 - Shoulder Bend (downwards)
J3 - Elbow Bend (downwards)
J4 - Right Wrist (downwards)
J5 - Left Wrist (downwards)
J6 - Hand (open)

Important Point: Unlike operation with the hand-held teach control, using the @STEP command does not
uncouple the elbow, <J3>, from the hand, <J6>. Moreover, you cannot specify "pitch" and "roll" directly, but
only the number of half-steps for the base, shoulder, elbow, pitch, roll, and grip are given by B, S, E, P, R,
and G, respectively, then the motion command you would use is simply:

@STEP <SP>,B,S,E,(P-R),(P+R),(E+G),<OUT><CR>

If you specity an unequal number of half-steps for each joint, then TeachMover firmware will automatically
coordinate the timing so as to produce smooth simultaneous motion of the motors. For example, if the elbow
motor is told to move 16 steps and the shoulder motor 3 steps, the resultant timing is as ilustrated in Figure
7-8.

Ctrl-C's TeachMover User Manual http://www.ctrl-c.liu.se/~magnus/ROBOT.HTMLX

19 of 19 12/21/2011 9:53 PM

